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Since this project has been renewed, and the details
of progress have been reported in the renewal proposal, we
shall summarize here only briefly what has been done in the
past year.

Our goal in the project is to investigate earthquake
precursors in relation to the stress in the earth. For
this purpose, we determine incremental stress at depths
from geodetic data obtained on the surface. We have
completed the computer program for the geodetic data inversion
and applied it to the data from the Palmdale area with some
preliminary results.

The geodetic inverse problem is formulated in terms of
known 3 component displacement and vanishing stress on the
surface (Cauchy's boundary condition for an elliptic operator
equation). Three dimensional finite element method provides
a discretized operator. The input requires data both on
vertical and horizontal displacements simultaneously. Such
data are available for limited areas from geodimeter and
leveling survey.

The inversion scheme is tested using artificial data
generated by Mindlin's buried point source solution. The
result was satisfactory for the 20-nodes isoparametric element
scheme, which we are now using.

The scheme was applied to a small area near Palmdale,
Calif. where 3 compcnent data are available from geodimeter
network and leveling survey from 1959 to 1976. The
incremental stress obtained during the period of uplift
(1959 to 1962) shows the dominance of horizontal tensional
stress in the direction of N48°E with magnitude 2.1 bars at
the depth of 3.75 km. During the period of downwarp, the
maximum principal incremental stress become horizontal
compression in the direction of N40°W with magnitude 2.2
bars at the depth of 3.75 km while minimum principal
incremental stress was near vertical and tension. The
compressional stress increases with depth to 4.2 bars at
the depth of 6.5 km and 7.0 bars at the depth of 8.75 bars.
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The sense and direction of incremental stress during
the downwarp period are consistent with the fault plane
solutions for earthquakes in the early period of swarm
activities which coincides with the late period of downwarp.
The magnitude of the incremental stress is compatible with
the estimate from the observed geomagnetic change in the
same period for the same area.

The above preliminary results were reported by the
principal investigator at the Ewing Symposium on Earthguake
Prediction held May 12-16, 1980, in which he proposed a
probabilistic synthesis approach for uniting the results
from laboratory, field and model studies on earthquake prediction.
A new concept of "probability gain" was introduced for a given
precursor, and its evaluation by various methods were
discussed. The incremental stress to be determined by the
current project may be used to estimate the probability gain.
The probability gain can be translated into a quantitative
measure of gradation of concern on earthquake occurrence
useful for public offices concerned with earthguake hazard.

Reports
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A PROBABILISTIC SYNTHESIS OF PRECURSORY PHENOMENA

Keiiti Aki

Department of Earth and Planetary Sciences

Massachusetts Institute of Technology

Abstract

The concept of probability gain associated with a precursor may be
useful for unifying various areas of earthquake prediction research. Judging
from the success of predicting the Haicheng earthquake of 1975, the
probability gain at each stage of long-term, intermediate-term, short-term and
imminent prediction in this case is estimated as a factor of about 30. For
many independent precursors, the Baysian theorem shows that the total
probability gain is approximately the product of individual gains.

The probability gain for an individual precursor may be calculated as
its success rate divided by the precursor time (Utsu, 1979). The success rate
can only be determined from the accumulation of experiences with actual
earthquakes. The precursor time, on the other hand, may be studied
experimentally and theoretically. A review of these studies leads to a
suggestion that the loading rate may be faster for smaller earthquakes. The
existence of so called "sensitive spots" where precursory strain, radon or
other geochemical anomalies to show up even for distant earthquakes suggest
that some sites may have stress amplification (concentration) effect which may

also account for higher loading rate for a small earthquake.
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The concept of fractals (a family of irregular or fragmented shapes)
developed by Mandelbrot (1977) is applied to the fault plane to gain some
insight into its geometry. If we use the idea of barrier model in which
smaller earthquakes are generated by the segmentation of a large earthquake,
the fractal dimension of the fault plane becomes equal to 3b/c where b is the
b value of magnitude-frequency relation, and ¢ is the log-moment vs magnitude
slope (c Y 1.5). For 1<b<1l.5, which is usually observed, the fractal
dimension varies from 2 (filling up plane) to 3 (filling up volume). For
0.5<b<1.0, which is sometimes observed for foreshocks, the model corresponds
to fault lines trying to fill up a plane.‘>The Goishi model of Otsuka (1972)
and branching model of Vere-Jones (1976) have such geometry. Assuming that
the total length of branches is proportional to earthquake energy, the b value
for these models becomes 0.75, corresponding to the fractal dimension of 1.5.

The probability gain for the tectonic stress increase by AC can be
expressed as exp (PBA0 ), The coefficient B has been obtained in laboratories
and in field using various methods. The value of B varies wildly, but tends
to show higher value when the stress is applied in a large scale. This may
also be explained by a stress amplification due to the fractal nature of
fault plane. Deterministic studies of inhomogeneities, irregularity and
fragmentation of fault zone will be important for understanding precursor

phenomena.



Introduction

The most impressive accomplishment in seismology during the last decade
was the success of our Chinese colleagues in predicting several major
earthquakes. Let us take the Haicheng earthquake of 1975 and consider the
probability of its occurrence before the earthquake. When the warning of
earthquake occurrence was issued and people were kept outdoors in cold winter
temperatures, the hazard rate, that is, the probability of earthquake
occurrence per unit time, must have been on the order of 1 per several hours.
The area is normally aseismic and historié';ecords indicate the hazard rate to
be on the order of 1 per thousand years. In other words, the information
gathered by Chinese colleagues was able to raise the probability by a factor
of about 10%. This remarkable accomplishment was made in four stages, namely,
long-term, intermediate-term, short-term and imminent prediction. Figure 1
illustrates schematically how the unconditional hazard rate estimated from
historic data was raised by each stage of prediction. Assuming an equal gain
for all the stages, we find that each stage contributed to the probability
gain of a factor of about 30. In order to achieve this amount of probability
gain, many, many specialists and non-specialists were engaged in collecting
information on various precursory phenomena. Some of the key precursors at
each stage are indicated in Figure 1.

The purpose of the present paper is to unify various areas of

earthquake prediction research by the concept of probability gain . The

probability gain for a particular precursor may be studied empirically using

past experiences with actual earthquakes. It may be studied in a laboratory
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scale model under controlled conditions. More fundamentally, the probability
gain may be determined by the increase of tectonic stress, which can be
estimated from geodetic data. If these studies can develop a means to
determine probability gain as a function of given precursors, the results can
be translated into objective quantitative measure for the grade of concern
about an earthquake occurrence, which will be helpful to the public offices in
charge of public safety.

Let us start with a few definitions.

Definitions
First we specify the area in which an earthquake is predicted to
occur. Then, we can define the average frequency of occurrence of earthquakes
with a certain magnitude range in that area. For example, if the number N(M)
of earthquakes with magnitude greater than M is recorded during the total time
period T, the average rate of occurrence p, per unit time is given by
_ XM

P,= 7 (1)
For a short time interval T , then, the unconditional probability P(M) of
occurrence of an earthquake with magnitude greater than M in that area is

given by
P(M) = P,T (2)

We shall divide the time axis into consecutive segments with the

constant interval T as shown in Figure 2. The crosses indicate the occurrence
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of an earthquake with magnitude greater than M. The interval T is taken short
enough so that each segment contains at most one earthquake. We shall write

the total number of segments as

(3)

=
1]
~ |3

Let us now introduce precursors, and designate them as A, B, C,
For example, A may be a swarm of small earthquakes which may be characterized
by the duration, the maximum magnitude and the b value. B may be a ground
uphea&al characterized by the duration, extent and amount of uplift. C may be
a Radon anomaly observed in the area characterized by the duration and
amplitude. Suppose that, in the total period of observation, the precursor A
showed up for time intervals shown in Figure 3.

Consider those segments during which the precursor A existed. Of those

segments, let the number of segments containing an earthquake be , and the

A
number of segments containing no earthquake be HA' Then, we can define the

conditional probability P(MIA) of occurrence of an earthquake within a time

interval t under the condition that the precursor A is existing as
A
P(M|A) = —— ()
Since, for small T , P(M]A) is proportional to v , we can write

P(M|a) = P, (5)
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PA is the probability of an earthquake per unit time under the condition that
the precursor A is existing.
We define similarly nB, %B and pB for the precursor B, and so on.
Here, we simplified our problem by neglecting the details of each precursor
phenomenon, which may be included by the explicit use of multiple parameters

as done by Rhoades and Evison (1979).

Conditional Probability for Multiple Independent Precursors

Let us find the probability P(M|A,B,C,...) of occurrence of an
earthquake (with magnitude greater than M in a specified area) under the
condition that n independent precursors A,B,C,... appeared simultaneously.

According to the Bayes' theoren,

P(A,B,C|M) P(M)

P(M|A,B,C) TTWRO)

P(A,B,C[M) P(M)

= (6)
P(A,B,C|M) P(M) + P(A,B,C M) P(M)
where ﬁ means the non-occurrence of an earthquake.
Since we assume the statistical independence among the precursors,
P(A,B,C|M) = P(A|M) P(B|M) P(C|M) (7

and

P(A,B,Clﬁ) = P(Alﬁ) P(B]ﬁ) P(clﬁ) (8)
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On the other hand, from the definitions given in the preceding section,

P(A|M) = A (9)

N
PM) = (10)

N

o

n

n
A
P =

(a[M) T (11)

(o]

and
" . N -N

P(M) = o (12)

N

(o]
Putting the equations (7) through (12) into (6), we obtain
1
P (M|a,B,C) = PY—— ) (13)
nA nB nc N n-
l+(;—' P VG
A B C o
Using equation (4), the above relation can be rewritten as

P(M|4,B,C) = 1 (14)

n-1

1 1 1 1
1+ (P(M[A)_l)(P(M[B)—l)(P(MIC)_l)")/Qi?ﬁb_l)

The above equation was obtained by Utsu (1979) without the use of the Bayes'
theorem. For a small T the above probability is proportional to T . We can,

then write

P(M|4,B,C) ¥ pe,



where

p=p, A" Pc (15)
P, Py P,
The above extremely simple relation shows that, for multiple
independent precursors, the conditional rate of earthquake occurrence can be
obtained by multiplying the unconditional rate P, by the ratios,

conditional probability
unconditional probability

for all the precursors. We shall call the above ratio as the probability gain
of a precursor.

A quantitative measure of the grade of concern on an earthquake
occurrence is illustrated in Figure 4, which shows the probability of
occurrence per day of én earthquake with magnitude greater than a specified
value. The unconditional probability is determined from the precursor data by
equation (1). The precursors A, B, and C increase this probability
approximately by a factor of ;A.;§_§§.as shown in equation (15). The example
shown in Figure 4 corresponds go gheoearthquake Wwith M>6 1/2 in the
Izu-Oshima area in Japan just before the earthquake of Jan. 14, 1978.
Precursors A, B, and C are uplift (including gravity change), foreshocks, and
Radon anomalies (including water-level change) respectively. The probability
gain for each precursor was assigned by Utsu (1979) in a manner described
later. The conditional probability for the three precursors almost reached
the highest grade of concern VI. Although the evaiuation of conditional
probability was not made in real time, the Japan Meterological Agency

nevertheless issued an earthquake information at 10h50m, on Jan. 14 stating
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that there was a possiblity of occurrence of an earthquake causing a minor

damage. An earthquake with M = 7 took place at 12h24m on the same day.

How to Assign the Probability Gain for a Particular Precursor

The evaluation of an earthquake prediction is very simple using the
procedure described in the preceding section, if we know the probability gain
pA/po’ pB/po, ... for given precursors.

For the Izu-Oshima earthquake of 1978, Utsu (1979) estimated the
probability gain in the following manner. The precursor A is the uplift in
Izu Peninsula which was confirmed also by gravity change. The diameter of
uplifted area is about 25 km, which may correspond to the source size of an
earthquake with M = 6 1/2. According to a summary by Sato and Iuchi quoted in
Utsu (1979), only 17% of anomalous uplifts were connected directly to
earthquake occurrence. However, since the uplift in this case is so
conspicuous, Utsu assigned the probability of 1/3 instead of 17%. He also
assigned the life-time uplift (or precursor time) to be five years. This

gives the conditional probability rate P, = per day.

1
3x5x365
The precursor B is the earthquake swarm taking place in the area.

According to statistics, one out of twenty swarms may be followed by a major
earthquake. However, the Izu area is known for relatively frequent
foreshocks. Utsu, thus, assigns the probability of 1/10 instead of 1/20 for
the chance of a swarm to be followed by a major earthquake in this area. Utsu
made a study of foreshocks for 26 major earthquakes, and found that the

mainshock occurred with three days from the biggest foreshock for 19 cases out
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of 26, and that the difference between the magnitude of main shock and that of
the biggest foreshock was greater than 1.6 for 10 cases out of 26. Since the

biggest foreshock in the present case was M 4.9, the difference between the
magnitude of presumed main shock (M 6.5) and that of the biggest foreshock is
1.6. Thus, he assigned the conditional probability rate Py to be
1_c1) %% %%%. Y 1072 per day.

Finally, the precursor C for the Izu-Oshima earthquake is the composite
of Radon anomaly, anomalous water table change, and volumetric strain
anomaly. He considers that these three precursors may be closely related, and
treats them as one precursor. He just assigns the precursor time of 1 month,
and the probability that the precursor is followed by a major earthquake to be
1/710. This gives Pc = _l_.per day,

300

With the above estimates of conditional probabilty rates p ., pB, pC and

A
the unconditional probabilit??éi based on the past seismicity in the area, he
calculates the probability gains as shown in Figure 4. The precursor A
(uplift) gives only the probability gain of about 2, while the precursors B (radon)
and C (foreshock) gives the gain of about 100. The former, however, was
important for assigning the magnitude of predicted earthquake. The main
reason for the high gain of latter precursors is their short lifetime.

The probabilty gain is a function of magnitude of earthquake to be
predicted. For a given earthquake swarm the probabilty that the swarm be
accompanied by a major earthquake will decrease sharply with the magnitude of

the latter. The longer lifetime of precursor for greater earthquakes as
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proposed by various people also tend to diminish the probability gain for
precursors of greater earthquakes.

On the other hand, a tremendous gain is possible, if a particular
short-term precursor is expected with a high degree of certainty. For
example, Sieh's (1978) suggestion that one out of several Parkfield
earthquakes may become a foreshock of the next 1857 great Califoria earthquake
will give a very high conditional probability rate, say, 107! per day. This
means the probability gain of more than 10"%. With several additional
precursors of moderate or small gains, it may be possible to issue a

high-grade concern before the next 1857 earthquake.

Precursor Time for Various Models of Rock Failure

As described in the preceding section, Utsu (1979) estimates the
probability gain for a given precursor to be equal its success rate divided by
the precursor time. The success rate can only be determined from the
accumulation of experiences with actual earthquakes. The precursor time, on
the other hand, may be studied using rock samples in the laboratory under
various conditions, or by analyzing models of rock failure theoretically.
Here we shall make a review of proposed models with regard to the question
"what determines the precursor time?".

Theoretical studies of the above problem were made by Rice (1979) and
Rice and Rudnicki (1979) for a fluid-filled porous medium, and they concluded
that not only the fault length of the impending earthquake but also the
loading rate and the constitutive relation may play important parts. Their

result showed that the precursor time is closer to proportional to L (fault
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length) rather than to L? as suggested in various empirical formulas
(Tsubokawa [1969], Scholtz, et al. [1973], Rikitake [1976]). Dieterich (1979)
also suggests that the precursor time may be proportional to L on the basis of
the precursory creep observed in his laboratory experiment and reproduced
theoretically by a frictional model of slip-weakening instability. His
precursor time is the travel time of precursory creep over the fault length,
thus proportional to the latter.

Brady (1974) claims that the L? dependence of precursory time on fault
length can be derived for a dry-dilatancy model without fluid diffusion. A
close look at the derivation of his equation (19) reveals an unacceptable
assumption made on the average strain ¢ within a volume element der due to

closure of an average sized microcrack. The average strain can be written

as

[s(;\(’)dv

der

der

Since s({) is a decreasing function with distance from the microcrack, beyond
a certain size of der, the numerator will reach a constant asymptotically.
Since, by definition, der should be large enough to include many cracks, £
will be inversely proportional to der instead of a constant as assumed by
Brady. If we correct for this, the precursor time becomes independent of L.
This conclusion is expected from a simple consideration that the
successive stages of dilatancy model (Miachkin et al., 1975, Sobolev, et al.,

1978) are primarily determined by the stress relative to the failure stress

(independent of L), and the precursory time is mainly determined by the
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loading rate. There is no obvious reason why the precursory time should
depend on fault length, for a dry dilatancy model.

If the loading rate determines the precursor time, the empirical
relation between precursor time and fault length means that the loading rate
is higher for smaller earthquakes.

This magnitude dependence of loading rate is somewhat difficult to
conceive for a homogenous continuum model of the earth and a common source
model of stress for all earthquakes, that is, the plate motion.

One disturbing thing about the empirical relation between the precusor
time and earthquake magnitude is the fact pointed out by Tsubokawa (1969) and
Anderson and Whitcom (1975) that the slope of log precursor time vs.magnitude
is identical to that of log recurrence time vs.magnitude. This means that the
observed precursor time is roughly a fixed fraction of the recurrence time.
Since no one tries to pick up a precursor for an earthquake before the time of
occurrence of the preceding one, it may be suspected that those precursors may
be just noises. On the other hand, these precursors may be real signals as
demonstrated by the successful prediction of the Haicheng and other
earthquakes.

If we accept the reality of precursors and the magnitude dependence of
precursor time, we may have to accept also that the loading rate may be higher
for smaller earthquakes.

A higher loading rate for a localized region relative to the
surrounding is possible if the stress in the region is somehow amplified.
Inhomogeneities such as joints and inclusions can cause such an amplification

through stress concentration. The existence of so called "“sensitive spots"
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where precursory strain, radon or other geochemical anomalies tend to show up
even for distant earthquakes, as well as the fact that even in the near-field
of an earthquake, some precursory phenomena (such as the anomalous water table
change) occur only at a small number of sites (wells) also suggest that some

sites may be more sensitive because of the greater stress amplification.

Barrier Model and Fractal Dimensions of Fault Planes

The inhomogeneity of the fault zone, sometimes called "patches",
"barriers" and "asperities™, also introduce stress concentration. These
inhomogeneities appear to exist in all scales. Microscopic pictures of the
sections of rock sample after failure show that the zone of failure is not a
continuous plane but fragmented. Similar fragmentation of fault has been
observed at the site of rock burst in a deep mine (e.g., Spottiswoode and
McGarr, 1975) and in the epicentral areas of major earthquakes (e.g.,
Tchalenko and Berberian, 1975). Das and Aki (1977) made a numerical
experiment on rupture propagation over a fault plane with distributed
barriers, and showed that some of the barriers may remain unbroken after the
rupture propagation, offering a mechanism to account for fragmented fault.

The stress concentration around unbroken barriers may become the source
of aftershocks (Otsuka, 1976). Aki (1978) summarized the relation between the
barrier interval and the maximum slip obtained by various methods, and found
that the barrier interval increases with the slip even for the same fault
zone. This is consistent with the observed high Griffith fracture energy for
greater earthquakes (Aki, 1979), because greater earthquakes break stronger

fracture energy barriers with resultant longer barrier intervals.
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Andrews (1978) pointed out, from a consideration of energetics, that
the stationary occurrence of a large number of small earthquakes cannot be
explained by the load of smoothly varying tectonic stress alone, but requires
a generation of short wavelength self stress by a large earthquake, unless
fault creep, varying in amplitude of all length scales prepares the fault for
small earthquakes. The barrier model offers a physical mechanism for such a
roughening of self stress in the fault zone after a major earthquake.

The above line of reasoning suggests a generic process of the whole
ensemble of earthquakes, in which an earthquake prepares the stress field for
the smaller earthquakes. This is similar to the phenomena of turbulence, in
which a large eddy splits into smaller ones, generating a hierachy of eddies
linked by a cascade.

The concept of "fractals" developed in a book by Mandelbrot (1977) may
be useful for describing the geometry of the assemblage of fault planes. A
fractal is a family of irregular or fragmented shapes. An example is the
length of the coast of Britain, which increases indefinitely as the scales of
map is made finer. Topologically, a coast is a line with dimension 1. To
describe the departure of the coast line from a simple line with finite
length, he introduces the fractal dimension. For example, the trace of
Brownian moton of a particle has the fractal dimension of 2 because it fills
up the plane, and the fractal dimension of west coast of Britain is determined
to be about 1.25. One way to obtain the fractal dimension D is, given a
segment, to find the number N of subsegments which has a linear dimension r
times the segment. Then, D is given by logN/log(l/r). For example, if a
straight line is divided into N segments, r = 1/N and therefore D = 1. If a

square is divided into N squares, r = 1/¥31 and therefore D = 2.
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Assuming a process in which smaller earthquakes are generated by a
large earthquake in the manner in which aftershocks are generated by the
barrier model, we can interpret the magnitude-frequency relation and find the
fractal dimension of fault plane (we allow an overlap of fault planes, in
accordance with the barrier model). Let the number of earthquakes (in a given
time-space range) with fault length greater than L be N(L). The slope of log
N(L) against log L is 3b/c, where b is the slope of log frequency-magnitude
relation and ¢ is the slope of log moment-magnitude relation, and we assume
that the seismic moment is proportional to L3 (self-similarity). To be
compatible with the process for generating'Ségments, we shall restrict the

possible fault length to be Ln = rL , where n is the integer.

o
From the n to (n + 1) step, the length is reduced by a factor r. In
this process, the number of earthquakes is multipled by (l/r)3b/c, because
AL = (Ln+1 - Ln) is proportional to L and AL dN/dL is proportional to st/c
Thus, the fractal dimension of fault plane is D = 3b/c. We shall consider the
usual case of ¢ = 1.5 (Hanks and Kanarmori, 1979). Then, if b = 1, the
fractal dimension of fault plane is 2, same as its topological dimension. If
b = 1.5, on the other hand, the fractal dimension becomes 3, which corresponds
to filling up volume with fault planes. In most cases, the observed b value
falls between the above two extremes. The value slightly greater than 1
observed for the world, imply that the assemblage of fault planes, "the plate
boundary" in the context of plate tectonics, is a little more than a plane.
For 0.5 < b < 1.0, the fractal dimension becomes between 1 and 2. For
them, one can no longer consider the fault as a plane, because the fractal

dimension must be greater than the topological dimension. It is possible,

however, to imagine fault lines trying to fill up a plane. As a matter of
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fact, the goishi model of Otsuka (1972) (see also Saito et al., 1973 and
Maruyama, 1978) and the branching model of Vere-Jones (1976) have such
geometry. In fact, the corresponding log frequency-magnitude relation becomes
linear (in the critical case) with the b value equal to 0.75, assuming that
the total length of branches is proportional to earthquake energy. This
suggests that the fractal dimension of the branching model is 1.5.

Otsuka'a model has been shown to be essentially the same as the model
used in the study of percolation process. Otsuka proposed this model to
describe the growth of an earthquake fault. His model is not based on the
elasto-dynamics of rupture propagation alohg a fault plane, but is based on a
probabilistic growth of a tree-like shape. Seismological observations clearly
show that an earthquake involves a propagation of rupture with the speed
comparable to elastic wave velocities and is not a percolation process. On
the other hand, his model may be useful for studying the stage of preparation
of a large earthquake. The barrier model used for generating a hierachy of
earthquakes is adequate for aftershocks and probably for the normal
earthquake, but not for foreshocks which will precede a larger earthquake. If
there is a basic generic difference between foreshocks and normal earthquakes,
there remains a hope to discriminate them. Smaller b values observed for some
foreshocks than for aftershocks certainly agree with the idea that the
percolation model applies to the former and the barrier model to the latter.
Needless to say, the precursor time will be longer for larger earthquakes if
the percolation model is appliecable to the preparation stage. The cross
section of branches at the earth's surface will be points, and may be very
difficult to be detected without numerous observations. This may explain the

reason for the Chinese successful predictions.
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Probability Gain by an Increase in Tectonic Stress

So far, we have mainly considered the geometry of the assemblage of
fault planes, somewhat phenomenologically without paying much attention to the
detailed state of stress and dynamic process going on over the fault plane.
More explicit discussions of these subjects have been given by Hanks (1979)
and Andrews (1980). Here we shall stay out of the stress distribution in the
fault zone and consider only its response to applied external stress, namely,
the problem of estimating the probability gain of an earthquake occurrence by
an increase in tectonic stress.

How the probability of earthquake occurrence depends on the tectonic
stress is an extremely complex problem. According to Mogi (1962), the
probability of occurence of fracture in a rock sample increases exponentially
with the applied stress. When a constant stress ¢ is applied at t = o, he
found that the probability of occurrence of fracture between t and t + dt is

independent of t and given by

u(t)dt = H, exp (Bo) (16)

where H(t) is what we called "hazard rate" earlier, and B is determined as
0.37 bar~! for the tensile fracture of granite samples in the atmosphere. The
experiment by Scholtz (1972) on static fatigue of quartz under uniaxial
compression shows the same functional dependence on stress, but with B about
one hundred times smaller than Mogi's value. The probability gain due to
stress increase by Ac is simply exp (BAo), which will be wildly different

whether we use Mogi's value or Scholtz's value for B .
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The coefficient B can be estimated from the recurrence time of major
earthquakes in a fault zone and the associated stress drop. For the
Hokkaido-Kuril region, Utsu (1972) constructed a statistical model based on
equation (16) and determined the model parameter by fitting the data on
recurrence time. Combining Utsu's result with the average stress accumulation
rate (0.3 bar per year) inferred from the stress drops in major earthquakes in
this zone (Fukao and Furumoto, 1979), we find that B is 1.1 bar"!. Earlier,
Hagiwara (1974) obtained 8 of about 0.3 bar~! by applying equation (16) to the
statistical distribution of ultimate strain obtained by geodetic measurements.

From time to time, we find reports éﬂ;an apparent sensitivity of
earthquake occurrence to small stress changes such as due to earth tide and
atmospheric pressure. For example, Conrad (1932) showed an impressive
evidence for the increase of local earthquake frequency by 30% due to the
atmospheric pressure gradient across the Alps by 5™ Hg (6.7 x 1073 bars) or
greater. This gives B to be about 40 bar~!.

In this conference, Barry Raleigh reported about the increase of
seismicity in southern California by a factor of 2 which was associated with a
strain change of 10-®, This corresponds to the value of 8 about 2 bar‘l,
which is much greater than laboratory values but comparable to the
Hokkaido-Kuril result.

The value of B estimated by various methods, thus, ranges from 0.004 to
40 bar-! over 4 decades. There is some suggestion of increasing g with
increasing scale length. In other words, the probability of earthquake

occurrence is more sensitive to stress change, when stress is applied in a

larger scale.
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Earlier, we héve discussed about the scale dependence of loading rate,
and suggested that stress concentration or amplification may be occurring in a
cascade from a larger scale to successively smaller scales. The scale

dependence of B may also be attributed to such stress amplification.

Discussion

I feel that fractal models of fault planes would be useful for
understanding the precursory phenomena, especially with regard to their
sensitivity to tectonic stress. The currently most reliable data for
estimating tectonic stress are geodetic daié supplied from levelling and
geodimeter survey. One promising approach toward understanding precursory
phenomena is to determine the stress change at depth from geodetic data, and
then correlate the estimated stress change with the stress-sensitive phenomena
such as changes in seismicity and magnetic field. A preliminary result from
the Palmdale area obtained by Ikeda (1980) is encouraging. He inverted the
geodetic data into 3-D stress distribution and found that the state of
incremental stress during the downwarp period was in agreement with the fault
plane solutions for the swarm of earthquakes during the same period given by
McNally et al. (1978). From the magnitude of incremental stress (estimated at
about 10 bars) and increase in the frequency of small earthquakes, the
fg-value was estimated to be about 0.3 bar . This magnitude of stress increase
was consistent with that estimated by Johnston et al. (1979) from the observed

magnetic anomaly.
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In the present paper, we discussed the fractal aspect of fault planes

only from the statistical point. For the purpose of earthquake prediction,
however, it may be necessary to study them deterministically. For example, we
need to know where the sensitive spots are in order to observe precursors.
Recent work by Bakun et al. (1980) on the relation between detailed seismicity
and geometry of fault fragmentation along a part of the the San Andreas fault
demonstrated that such a deterministric approach may be feasible and

promising.
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Figure Captions

The successful prediction of the Haicheng earthquake implies that the

hazard rate (probability of occurrence of earthquake per unit time)
had been increased from about 1 per 1000 years to 1 per several hours
through acquisition of precursory information. The probability gain

at each of four stages of prediction is about a factor of 30.

The cross indicates an earthquake. The time interval 1 is taken

short enough so that each interval contains, at most, one earthquake.

The precursor A occurs in time intervals marked A.

The probability gains calculated by Utsu (1979) for precursors A
(uplift), B (foreshock) and C (radon and water table) for the

Izu-Oshima earthquake of 1978.



ri

0.0l

TIME TO NEXT EARTHQUAKE OCCURRENCE IN DAY

O.1

I I I
HAICHENG, 1975

\ \
«? 7?7 B

~ N\

~
\\ \

IMMINENT WARIWNF-=~\ ]
foreshock \\

electric current \

tilt —
SHORT TERM » :
tilt, radon, animal
water table
seismicity gap

INTERRMEDIATE - : _
fauN creep

LONG TER
migration
seismicity incre

LAST 240 YEARS =

| | | |

4 o 6 4 8

MAGNITUDE

PROBABABILITY PER DAY



— T —
1. Y i 1V 1 1V
7% T 7\ LAY

F 1 VW1

FiG 2

Flg 3




I
GRADE
OF
CONCERN

O

60
N

PROBABILITY RATE (day™"
O!
(@)

MAGNITUDE

|G 4



THREE DIMENSIONAL GEODETIC INVERSION METHOD FOR
STRESS MODELLING IN THE LITHOSPHERE

BY
KEIICHIRO IKEDA

B.S. University of Tokyo (1974)
M. Eng. University of Tokyo (1976)

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENT OF
THE DEGREE OF
MASTER OF SCIENCE
AT THE
MASSACHUSETTS INSTITUTE OF TECENOLCGY
January 1980

(:) Massachusetts Institute of Technology 19280

Signature of Author:

Department of Earth and Planetary
Sciences
January 18, 1980

Certified by:

ReIiti AkI
Thesis Supervisor

Accepted by:

Theodore R. Madden
Chairman, Departmental Graduate
Committee



THREE DIMENSIONAL GEODETIC INVERSION METHOD
FOR STRESS MODELLING IN THE LITHOSPHERE

by
KEIICHIRO IKEDA

Submitted to the Department of Earth and Planetary Sciences
on January 18, 1980 in partial fulfillment of the regquire-
ment for the Degree of Master of Science in Earth and Plane-
tary Sciences.

ABSTRACT

The goal of the present project is to determine the
distribution of incremental stress inside the earth under
a seismic region as a basis for guantitative studies of
stress-induced earthgquake precursors. We formulated an
inverse problem for incremental stress in the earth to be
determined from three-component displacements observed on
the free surface. A body was cut out of the earth under
the surface at which displacements are known from geodetic
measurements. :

A special finite-element method is designed to give
,@ unique determination of stress in the interior of the
volume from known surface displacements and the free
surface condition. The scheme was successfully tested
using artificial data for a point source buried in a
homogeneous half-space. We are currently applying it
to the actual data from southern California geodimeter
network and levelling data during the Palmdale uplift
episode. A preliminary result indicates that the state
of stress at the depth of a few km can be considerably
different from the horizontal stress measured on the
surface. The estimated incremental stress shows an
encouraging agreement with observations on geomagnetic
field and earthguake swarm activities.
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Chapter 1. INTRODUCTION

A precise knowledge of the state of stress in the
lithosphere in a seismically active region is desirable
since the stress is believed to be the cause of an earthquake.

Many studies have been done to infer the state of stress
in the lithosphere. Laboratory studies suggest high shear
stress up to 2 kb along the San Andreas fault (Stesky and
Brace, 1973, Stesky, 1975), while heat flow studies give low
upper limit around 250 bar for possible shear stress there
(Brune et al., 1969, Lachenbruch ;nd Sass, 1973). This low
shear stress is consistent with the value suggested from the
studies of driving force for plate tectonics (Forsyth and
Uyeda, 1975, Richardson and Solomon, 1977, Richardson, 1978),
and seismic studies on stress drop (Aki, 1966, Wyss, 1970,
Wyss and Molnar, 1972), although recent discussion on plate
tectonics and earthquake stress-drop (Hanks, 1977) suggest
high shear stress of the order of a kilobar.

The lack of agreements among these studies show a
fundamental difficulty to know the state of stress in the
lithosphere precisely. On the other hand the stress incréﬁent
in the lithosphere may be easier to estimate than absolute
stress since repeated geodetic measurements can give the
incremental displacements at the surface.

The incremental stress may be related to earthquake

precursors in many ways. Sassa and Nishimura (1956) reported

rapid tilt changes in which so-called S-shaped changes in



the tilt-vector diagram were observed to occur a few hours
prior to the Nanki earthquake of 1950. The magnitude of
tilt was of the order of 0.1" at a distance of 100 km from
the epicenter. They observed similar tilt changes prior
to some other earthquakes. There have been many precursory
anomalous changes in land level such as reported for the
Niigata earthgquake of 1964 (Danbara, 1973). Castle et al.
(1974) studied levelling data near San Fernando and found
that anomalous level changes with maximum value of 200 mm
had taken place in a few years preceding the San Fernando
earthquake of 1971. An aseismic creep along the fault at
depth or a dilatancy are considered as causing these land
deformations prior to earthgquakes though exact mechanism
is not known (Wyss, 1977; Thatcher, 1976). These land
deformations are believed to be one of the most promising
precursors for earthquakes because they have been frequently
observed prior to many shallow earthquakes (Rikitake, 1975,
1976).

On the other hand, other precursors such as changes
in Vp/Vs, resistivity, geomagnetic field are still under
debate although they are also guite promising precursors,
especially in view of the dilatancy-diffusion hypothesis
(Nur, 1969). After Semenov (1969) observed that the ratios
of travel times of S and P waves significantly varied prior
to earthquakes in Russia, this has been followed by both

verifications and contradictions. For example Whitcomb



et al. (1973) reported 10% change in vp/vs over the three
years prior to the San Fernando earthquake of 1971 and
Stewart (1973) showed a Vp decrease by 20% prior to the
Pt. Mugu earthquake of 1973 while no change in Vp/Vs was
observed in the Bear Valley earthquake of 1972 (Bakun

et al., 1973). Bakun et al. attributed their negative
results to the stress level at shallow depths which might
be too low for dilatancy to take place. The laboratory
experiments showed that volumetric strain necessary to
explain the observed large Vp/VS change was much greater
than the stress level expected in the Bear Valley (Hadley,
1975).

Electrical resistivity change up to 24% was observed
two months before the Bear Valley earthquake of 1972 by
Mazzella and Morrison (1974). Laboratory experiments
showed dramatic changes in the electrical properties of
rock prior to failure (Brace and Orange, 1978a) in
agreement with some field observations. On the other hand,
a theoretical study of resistivity change based on a model
of strike slip fault showed that the observed resistivity
changes were several orders of magnitude larger than
predicted for the expected stress change.

The geomagnetic change due to the piezomagnetic
effect of rock under incremental stress is known to be
very effective as a procursor as well as an indirect

way to estimate the incremental stress at depth. Theoretical



study shows, assuming optimum material constants such as
high magnetization and high stress sensitivity, the stress
change caused by slip on a fault at shallow depth is
sufficienpt to produce the geomagnetic field change
observeg on the surface (Johnston, 1978, Johnston et al.,
1979).

The discrepancy between the theory on the stress-induced
precursory phenomena based on laboratory data and precursory
phenomena observed in the field may be attributed to the
scale effect of specimen as well as the state of incremental
stress at depth. The purpose of this thesis work is to
develop an inversion method based on the finite element
method using geodetic data on three-component displacement
obtained at the earth's surface for finding the distribution
of incremental stress at depths in a seismically active
region. Such a distribution of incremental stress in the
lithosphere will be useful together with laboratory
observation on rock properties (Brace and Orange, 1968a,
1968b, Nur, 1969, Brace, 1972, Hadley, 1975, Stesky, 1975,
Johnston, 1978) to find the cause of precursory phenomena.
We applied the inversion method to the Palmdale uplift,

southern California and obtained some preliminary

encouraging results.
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Chapter 2. FINITE ELEMENT METHOD

1. General Formulation

In order to develop a finite element scheme for
elasticity problems, we have to decide the type of
generalized coordinate and the order of interpolation
function as well as the shape of an element. If we use
nodal displacements as a generalized coordinate, we have
so-called finite element displacement method based on
minimum potential energy principle. If we choose stress
as a generalized coordinate, we ﬂave so-called conjugate
finite element method based on minimum complementary energy
principle. If we use displacements together with stress as
a generalized coordinate,:we have so-called hybrid finite
element method. The last one seems most adequate for
applying to our inversion, but the theory as well as
numerical technique of this method is still not well
established, and thereforé we need further study for
applying it to our inverse problem (Tong and Rosett, 1978,
Oden and Reddy, 1976). Since fairly well established theory
and numerical technique exist for the displacement finite
element method, we shall formulate our finite element scheme
and inversion scheme according to this method.

We shall define displacements within an element in a

matrix form as

(U]l =
(1)

'd§. 4@

aya—
IR
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where u,v,w are displacements in x,y,z direction. This
displacement vector is presented in terms of interpolation
functions and the generalized coordinate, i.e., nodal
displacements in the displacement based finite element

method. In matrix, they are:

(U] = [D(x,y,2)] [U®] (2)

where [U] is displacement vector, defined before, D(X,Y,2)
is interpolation matrix which gives [U] at an arbitrary
point from the nodal displacement matrix [u?]. [UR] can
be written explicitly as

e T = [u;viwy U,V Wy .. ukVkWK] (3)

where u;, Vi, Wy are x,y,z components of displacement
vector at ith node. The value of Kk depends on the degree
of interpolation function and shape of an element, and
k=20 if parabolic interpolation is used in a hexahedral

element. T denotes transpose of a matrix.

We shall define strain tensor [e], traction vector [T},

force vector [F], and elasticity matrix [C]. They are:
T - ] (4)
[e]l” = [eex &y fzz Yxy Yxz Yyz
M7 = [Ty T, T, (5)

[F1T = [F4 F, F,] (6)

Y



where €4, Yjj are six components of a strain tensor in
which we use engineering shear strain.

are the x,y,z components of surface traction vector and

T; or Fij (i = x,y.,2)

force vector. The elasticity matrix is in case of isotropic

material,

[c] =

We can define strain matrix [e]

transformation matrix [E] and nodal displacement matrix.

This is:

[e] = [E]

3
W[D]

o}

(0]

[E] =

)
a—y—[D]

)
5z (P!

o}

where A, u1 are Lame's constants.

0

0

(U

o

C

in terms of strain-

(7)

(8)

(9)



where [D] was defined din [2]. The total potential energy
of an elastic body can be presented as (Tong and Rosett,

1978)

n=f tre1T(clleldav - £ (U1 [Flav-/ [UlT(TIds (10)
2
v v v
where m is total potential enercy, s is boundary surface
and integration covers whole volume of a body. This is
the quantity to be minimized.
The above potential energy can be expressed as a sum

of energy for each element, i.e.,
T= I Tpn (11)

where m is the total number of elements. Substitution of

eg. (8) into eg. (10) yields

T
mo= UMK (07 - ot TIRY (12)

where | ], represents nth element, and [K]n and [R]n are

element stiffness matrix and element load matrix. Explicitly

they are
[K]_ = s [E], [C][E].dv (13)
n v n n
and

[Rl, = / (DIT(Fldav + f [D1T[Tlds. (14)
A S



R e

Making the potential energy in each element, presented by
eq. (12) stationary with respect to generalized coordinate,
i.e., nodal displacement, we have a linear equation for each

element as:

(K], (U], = [R], - (15)

2. Isoparametric element

The choice of an interpolation function is an important
part of the finite element method and depends on the type
of element to be used and on desired accuracy. The concept
of isoparametric element developed by Zienkiewicz, and his
associate [Zienkiewicz,1972] is one of the most versatile
interpolations because of its flexibility.

The basic concept in the isoparametric element formulation
is to express the element coordinates and its displacements
by the same interpolation function using the natural coordinate
system of the element. The coordinate interpolations in a

three~dimensional element are as:



i=1 * 1
2
y = I hjy; (16)
i=1
2
z = I h-zi
i=1 *

where x,y,z are the coordinates at any point of the element
and x4, Yi, 23 (L = 1,2) are the coordinates of the

ith node in the element, and ¢ denotes the total number

of nodes in the element.

The unknown quantities in eg. (16) i.e. the interpolation
function hj, have the fundamental property that its value in
the natural coordinate system is unity at the ith node and is
zero at all other nodes. Using this condition the interpolation
function hj corresponding to a specific nodal point
configuration can be derived. 1In the case of our three-
dimensional 20 nodes parabolic interpolation in hexahedral
element, these interpolation functions are given by the

following equations.



ol W | | |+ |+ |+ o+ | |+

P

PN

(1+r) (1+s) (1+t) (r+s+t-2z)

(1-r) (1+s) (1+t) (-r+s+t-2)

(1-r) (1-s) (1+t) (-r-s+t+2z)

(l+r) (1-s) (1+t) (r-s+t-2z2)

(1+r) (1+s) (1-t) (r+s-t-2z)

(1-r) (1+s) (1~t) (-r+s-t-2z)

(l-r) (1l-s) (1-t) (-r-s-t-2)

(1+r) (1-s) (1-t) (xr~s~-t-2)

(1-r2) (1+s) (1+t)

(1-r) (1-52) (1+t)

(1-r2) (1-s) (1+t)

(1+r) (1-s2) (1+t)

(1-r?) (1+s) (1-t)

l6.

(17



hyg = 3 (1-1) (1-s%) (1-¢)
his = 3 (1-r2) (1-s) (1-t)
hye = 3 (1+r) (1-52) (1-t)
hyy = 3 (1+2) (1+s) (1-t?)
hig = % (1-1) (1+s) (1-t2)
hig = § (1-7) (1-s) (1-t?)
hyo = 3 (1+1) (1-8) (1-t?)

(17)

17.

(cont'd)

where r,s,t are natural coordinate whose values range from

-1 to 1 as shown in Fig. 1.

The displacements in an element are interpolated by

the same relation as the coordinates in the isoparametric

interpolation, i.e., for displacement at any point of the

element, we have:

(18)
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where u,v,w are displacement component at any point in the
element and Uj vy wi (1 = 1,2) are these components of nodal
displacements of the element.

In order to evaluate the stiffness matrix [K] of an
element, we need to calculate the strain-transformation
matrix [E]. Since the element displacements are presented
in the natural coordinate system as shown in eqg. (17) we
must relate the derivatives in the local x,y,z coordinates
to the derivatives in the r,s,t natural coordinates. Using

a chain rule for partial derivatives, the relations are:

2. 83 . 33s 33t
90X or 9Xx 9s 9oX ot ox
5 _ _33r 83 . 33t
3y ~ 3r oy T 3s 3y T 3t 3y (13)
9 _ 9 93r 93 93s _ 9 3t
0z oY 0oX 9s 02 ot 9z °



20.

These equations show that we need the explicit inverse
relationship between x,y,z and s,r,t, i.e. we need to

know the functions

H
u

fl(x,y.z)

0]
il

fy(x,y,2) (20)
t = f3(x,y,2)

which are generally difficult to obtain explicitly and it
is natural recourse to use a numerical procedure.

The relation between the derivatives in the r,s,t
coordinate system and derivatives in the Xx,y,z coordinates

system can also be written using the chain rule:

9 . 3 9x, 093y, 3 0z
or 9X or dy 3dr 9z or
8 _ 83x, 33y, 83z
55 = 3x 3s ' 3y 3s T 3z 3s (21)
9 - 93, 93y, 3 3z
ot dxX ot dy ot 9z dt
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in matrix form we have

3 0

— = [J] (22)
olr] 3 [x]
where [J] is the Jacobian operator matrix i.e.
x 3y 2z
ar ar ar
_|x 3y 3z
[J] = r 55 38 (23)
3x dy 3z
at 3t 3t

Since we can evaluate Jacobian operator matrix [J] explicitly
using eq. (17), we can get the inverse relationship between

derivatives in two coordinate systems as

1 9
d[r]

= [J]~ (24)

o [x]
provided that matrix [J] is non-singular. This condition
is satisfied if the mapping between these two coordinate
systems, i.e. eqg. (20) is one to one.

Using eqg. (18) and eqg. (24) we evaluate derivatives

needed to construct the strain transformation matrix [E].
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The element stiffness matrix corresponding to the local

degree of freedom is derived as

T
[K] = J [E] [C][E]dv (25)
v
where [C] is elasticity matrix defined before.
Since strain-transformation matrix [E] is a function of
the natural coordinate r,s,t, the volume integral dv should

be written in terms of this coordinate system. That is:
dv = det [J] drdsdt (26)

where det denotes determinant of Jacobian operator matrix.
Since explicit solution for [J]"1 seldom exists, we must
use numerical integration to evaluate the volume integral
in eg. (25). We have
m m m T

[K] = iil jil kil aj0y0y [E]ijk[C][E]ijkdet[J]ijk (27)
where [ ]ijk represents a quantity evaluated at a point
i, S4, tp, M is the total number of sampling points for
numerical integration, and ajs Gy, 0 are weight at these
points. The sampling points and weighting factors depend on
the integration scheme to be used. We used Gauss-Legendre

gquadrature method, for which the sampling points and weights

are shown in Fig. 2 and Table 1.
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3. Assembling Matrix for the Whole Body

The final stage of finite element method is to assemble
[K]n matrix and [R]n matrix in each element to global matrix
[K] and [R] to attain the equilibrium condition of the whole
body. Since matrix [K] is a transfer matrix which represents
contributions of each component of nodal displacement matrix
[Un] to components of the load matrix [R], this is nothing
but a summation and re-numbering of matrix for each element.

For example, if we re-number the ith node of the 2th
element as the mth node of the giobal system, and the jth
node of 2th element as the nth node of the global system,

we have

[Kmn]g = i‘ [Klj],Q,'

i
3}

(Rl g [Ri] g (28)

where [Kij] is ij-component of stiffness matrix [K] and
subscript g represents global matrix and the summation is
taken over elements &' sharing the particular node. After
assembling whole element matrix using eq. (28) we have linear

equations to be solved, i.e. we have

[K] [U] = [R]- (29)
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Chapter 3. GEODETIC INVERSION SCHEME

1. General Theory

The use of the finite element method in inverse problem,
especially in parameter estimation problem, has been studied
in many fields in science and engineering during the last
decade. In geophysics some inversions based on the finite
element method were studied. Most of them used the observed
surface displacements associated with an earthquake to
estimate fault parameters such as slip vector (Jangle and
Frazar, 1973), visco-elastic constant of surrounding material
(Smith, 1973), and stress drop (McCowan et al., 1977) with
specified boundary conditions.

In our geodetic inverse problem, we want to calculate
the stress and displacements inside the earth's crust without
specifying anything on the internal boundary inside the
earth. The only boundary conditions available to us are
displacements and free surface condition on the surface
boundary. Mathematically this is known as a Cauchy boundary
condition for an elliptic equation and in general results in
unstable solutions for the entire region (Morse and Feshbach,
1953).

Suppose that the problem is reduced to a linear operator
equation Lx = y, where x is the desired solution. When this
problem is ill-posed, there are basically two methods for

remedy (Lunz, 1979). One is known as the regularization
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method in which we use a priori choice of the space of the
permitted solution to avoid instability by modifying the

functional to be minimized. For example, we minimize
J(x) = ||Lx - y|] + ay (%) (30)

instead of solving the equation Lx = y directly where || ||
denotes an appropriate norm, a > 0 and ¥ is a functional
defined on a solution space. This method is equivalent to
the damped least squares (Levenbergs, 1944), the stochastic
inverse (Franklin, 1970) and the generalized inverse (Wiggins,
1972) depending on the property of ¢ and the norm used.

Another way to solve this ill-posed operator equation is
the so-called expansion method. In this method we choose
finite dimensional space Xn and look for a solution in this
space. If [win] denotes a basis for Xn' we look for a solution

of the form
oy Yy (31)

such that

Lx. = y-. (32)



The latter method seems more convenient than the former
if we use the finite element method to discretize the operator
L, because of a large amount of computation for calculating
the norm. On the other hand, in the expansion method we can
choose any solution space so that accuracy and economic
factor can be satisfied at the same time. This can be
attained by appropriate choice of expansion by eqg. (31)
with specific mesh configurations which assure the same
number of knowns and unknowns.

2. Inversion Scheme

Using the finite element method derived in a previous
chapter, we can have discretized form of the operator
equation Lx = Y- Written explicitly, this equation is in a

partitioned form,

k L m n
k K11 Kip K3 Kig | [UrT] TR:T
2 K X K K U* R
21 22 23 24 2 |- | 2 (33)
m K31 K3z K33 K3y U3 R3
n Kypy Kgp Ky3  Kgy U, Ry
- _— - L —




where Kj1 is a(k x k)matrix. K;, is a(k x &) matrix, K;3 is

a k x m matrix, Ky, is a k x n matrix, Kpj is a (2 x 2)

matrix, Ky;3 is a 0 x m matrix, K,y is a (2 x n) matrix, Kj33

is am x mmatrix, K3g is a(m x n matrix, K y is a@ x n)

matrix, and Koy1s K31+ K39, K4l' Kyos K43 are transpose of

K12, Ky3» K23, Kigr K24, Kags respectively. U1* is a

(k x ) matrix, Uy* is a (& x 1) matrix, U3 is am x D matrix.

Uy is a(n x ) matrix, Ry* is a(k x D matrix, R, isa{®x 1l

matrix, R3* is a(m x 1) matrix, and Rqy is a @ x D matrix, and

a star represents that elements Sf that matrix are known

guantities. These known guantities are observed three

components on the surface, stress free condition on the surface

and the force balance condition inside the boundaries. The

latter two conditions give zero values to the load matrix [R].
The above matrix equation can be modified to give a more

convenient form to analyze, that is:

- — e —— |_. f—
Kl3 Kl4 0 0 U3 —Kll -—K12 I 0 Ui

= (34)
K33 K34 0 0 R2 —K3l -K32 0 I R;
S 0 S SR I — — —



where [I] denotes a unit matrix of appropriate order. As

can be seen from the above equation,.our problem is
overdetermined if £ + m + 2n < rank of L, =k + 4 + m + n
underdetermined if k + ¥ + m + n < rank of L, = % + m + 2n,
and ill-posed if rank of L, < k + 2 + m + n and rank of

Ln < & + m + 2n, and well-posed if rank of Ly =k + £ + m + n
= % + m + 2n, where L, represents the matrix on L.H.S. of

eq. (34).

We need, therefore, to have rank of L, = k + £+ m+ n
= 2+ m+ 2n or k = n. This last condition shows that the
number 6f surface nodes where we have both stress free
condition and displacements observation (this excludes the
boundary nodes on the surface) need to be the same as the
number of boundary nodes inside the earth where we know
neither tractions nor displacements. To attain this condition,
we need to choose a special family of the finite element
mesh configuration. This is mathematically equivalent to
specify the base of solution space in expansion method as
was shown in eq. (31). -

The simplest mesh configuration which satisfies the
condition is shown in Fig. 3. This mesh configuration has
a certain advantage that it allows us to increase the order
of interpolation function without changing the whole
configuration. This is shown in Fig. 4. The values of
k, 2, m, n in cases of 8 nodes of interpolation and 20-nodes

interpolation are presented in Table 2.
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Since in the parabolic interpolation using 20 nodes in
an element, the highest term is square, we expect that a
strain change in the element is at most linear. Thus if
we have to approximate a rapidly changing stress field
inside a block, the block must be further subdivided. We
can improve the accuracy of solution by subdividing the
inner block in Fig. 4 into 7 small blocks as shown in Fig. 5.
The values of k, 2, m, n are also shown in Table 2. It is
clear that the condition k = n still holds after this
subdivision.
3. Error Analysis
There are two sources of error in this finite element
inversion scheme. The first one is inherent to the property
of matrix Ln in eg. (34). As shown earlier, for the problem
to be well-posed it is necessary to have rank of L, =k + 2 + m + n
in addition to the condition k = n. This condition is satisfied,
in principle, by the family of mesh configuration as shown
previously, but numerically the system can be near rank-deficient.
To measure the well-posedness of the problem, it is
convenient to use a condition number K defined as

max || A ||

K = (35)

min || A ||

where A is an eigenvalue of matrix Lj.
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For the block whose dimension is 10 x 10 x 10 km,

3 to 109 depending on the

condition number around 10
configuration of inner nodes is obtained by calculating

the eigenvalue of matrix L,. Using formula on the relation
between the accuracy of fixed point arithmetic and condition

number K, (Wilkinson, 1969) i.e.,

s >t - logypK (36)

where s is the number of digits of precision in the solution
and t is the number of digits of arithmetic used in the
computer, we can have rough estimate on the truncation error
involved in this finite element inversion. Eg. 36 shows that
we have 1 digit to 0 digit of accuracies if we use 6-digit
arithmetic in the computer. Therefore the use of double
precision arithmetic is necessary.

Therther source of error in our finite element inversion
scheme is the error due to the use of specific mesh
configuration with high order interpolation. Since the
transformations of local coordinates x,y,z to natural
coordinates r,s,t may be non-linear if the element is deformed
from a rectangular as in Fig. 4, the error associated with
the interpolation function may change considerably.

This situation becomes clear if we choose two-dimensional
8-nodes element as an example. (This element corresponds to
a 20-nodes element in three-dimensions). This element is

shown in Fig. 6. The transformation between (x,y) and (r,s)
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coordinates are simply,

2{s + &, (L + s)}
2

(93
I

where & is the slope of upper edge shown in Fig. 6.

example, consider function u = y?2

Uj = y;2. The interpolation formula gives

where hj (r,s) is the interpolation function similar to
eg. (19) to eg. (38).
Inserting eqg. (11l) into eqg. (12), we obtain

hi(_r,s)lz[(si + fx ri(l + si)]2

8

8 &
= I hi(r,s)SLz(ri + EZ si)2 + I 2hi(r,s)22(si
i=1 i=1
8 2 2
€ L° ey 2.2
rlsiz% + iEl hj (r,s) + —7=— rys;

(37)

For

, which have nodal values

(38)

+.Ez.r
2

(39)

i)
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Since the order of interpclation function h; (r,s)
is at most cubic in r and s, it is impossible to describe
a function which contains a fourth power term in r and s
exactly. Since the first two terms on RHS of equation (39)

are parabolic and can be completely described, we have

8 2
- .2 €y 2 2 € % 2.2
u= 2°(s + =Xr)“ + (s + —XLr)rs + % h.:(r,s)=—¢,  2rs?
2 &y 2 i=1 1 4 Y Tivi
2 8
2 2
=y + g2 I hy(rs)rf s - rs?) (40)

This equation shows that the error depends on % and €y and
may be very sensitive to the mesh configuration.

The above error analysis gives us only a rough idea
of the error involved. An optimum mesh configuration must
be found by trial and error, since the complete error analysis
for an optimization is too complicated. The mesh configuration
shown in Fig. 7 appears to be near optimum for the case of a
buried point force model used in our test.

4. Testing With Artificial Data

In order to find the optimal mesh configuration, we
used artificial data generated by a buried point force in
a homogeneous half-space. Displacements at the free surface,
known as Mindlin's solution (Mindlin, 1936), are used as an
input to our inverse scheme. The calculated stress and
displacements at depths by our inverse scheme are then
compared with the true stress and displacement generated by

the point force.
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We used the configuration shown in Fig. 5, and the
block size (outer boundary) was chosen to be 10 x 10 x 10 km
or 20 x 20 x 20 km. The whole block was cut out of the
half-space which contains a point force directed upward at
depths 15 to 100 km. The horizontal location of block is
also varied relative to the point force. An example of
block location is depicted in Fig. 8. Figs. 9 and 10
represent the absolute error between the true displacement
and stress in the center of each element and those obtained
by our inversion scheme. Figs. li and 12 show the relative
error between the true value and inverted one. These values
are shown for various depths of the point source and a fixed
horizontal distance (14 km). It is shown that for the point
force at the depth of 25 km to 35 km, the accuracy of our
inversion scheme is within 5% for displacement and within
30% for stress components. Compared with the sensitivity
of error to the change of the depth of point source, the

sensitivity to the horizontal distance is small.
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Chapter 4. PALMDALE UPLIFT

1. Levelling Data

The anomalous uplift in Southern California, so-called
Palmdale bulge was first discovered in 1975 and reported by
Castle et al., in 1976 (Castle et al., 1976). The pattern of
uplift is shown in Fig. 13. This first survey was mainly
based on the levelling data obtained between 1959 and 1968,
and large scale high precision levelling survey was conducted
since then. The result of these continued surveys revealed
that the bulge was wider than estimated at first and also greater
in displacement (Castle, 1978). These surveys also
revealed that part of initial uplift subsided since 1974
although the space-time history of this subsidence or
"downwarp" 1s quite uncertain. These results are shown in
Fig. 14.

According to Castle (Castle, 1978), the whole episode
of uplift occurred as follows:

(1) The uplift began near the intersection of Garlock
fault and San Andreas fault in late 1959 and spread eastward.
which is confirmed by the continuous levelling near Palmdale
showing that this area uplifted 20 cm during 1959-1962 period.
This is shown in Fig. 15. The uplift gradually increased by

another 15 cm in the next 10 years.



46.

(9261° "ID 2 3lisD) woi4) HL61-6G61 Hdn 2lopwiod ¢l 614

WO 1INN

WA
1
o2 O

J3IVANTIVd




47.

(826! ‘alsD) woiqd) 8.61-6G6| diomumop pud }jijdn sppwipd t| b1




__ 9815
wn
[0l
i i
"
Y ogl.4|-
Z _
o
£ 981.31—
<
> i
s
-4
W 98|21
F
1 ] ! | | 1 | ] | 1 {
1920 1940 1960

TIME ( YEAR)

Fig. I5 Levelling data near Palmdale (From
Savage and Prescott, 1979)

1980

48.



(2) Between late 1972 and early 1974, the area of
uplift expanded to the southeast, where a maximum uplift
of 45 cm occurred near Yucca Valley.

(3) Between late 1974 and late 1976, much of the uplift
subsided. This downwarp reached 18 cm near Palmdale, 16 cm
near Cajon, and 24 cm in Mojave.

2. Triangulation Data

Since Reid's suggestion on monitoring a strain accumulation
as an earthquake precursor (Reid, 1910), extensive triangulation
survey has been conducted in California by many organizations
(Savage et al., 1973, Thatcher, 1976). These data show that
the general trend of horizontal strain accumulation near
Big Bend is 0.3 "~ 0.4 microstrain per year of contraction in
NS direction and O;O v 0.1 microstrain per yeér of extension
in EW direction. This pattern of strain accumulation is
consistent with the regional stress expected here from plate
tectonics (Atwater and Molnar, 1973).

After the discovery of Palmdale Bulge, interest in the
relationship between horizontal strain accumulation and
uplift during the uplift period is increased and many data
were re-analyzed.

Using triangulation network near Big Bend (Fig. 16),
Thatcher discussed that the direction of strain axises were
significantly different from the long term regional trend
during the uplift period 1959-1963. He also suggested that

the compressional axes are perpendicular to the contour
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of uplift almost everywhere (Thatcher, 1976). But his data
were based on Frank's method that uses only the change of
angle in a triangulation network and therefore we can include
any amount of dilatation on his data. As Savage and Prescott
stated, this fact makes his result quite model dependent
(Savage and Prescott, 1979).

Savage et al. analyzed geodometer data along the San
Andreas fault (Fig. 16) and revealed no special change during
the period 1950-1572 (Savage et al., 1973). The obtained data
shows 0.4 microstrain per year of contraction in N13°E
direction and 0.13 microstrain per year of extension in the
direction of N77°W near the intersection of Garlock fault
and San Andreas fault. Near Palmdale, they observed 0.35
microstrain per year of contraction in the direction of N7°E
and 0.07 microstrain per year of extension in the direction of
N83°W. These results are based on the change of the length of
lines and are therefore not model dependent. Savage et al.
also analyzed the strain rate near Palmdale in the period of
1972 to 1978 and revealed that the strain accumulations are
0.3 microstrain per year in NS direction and no strain
accumulation in EW direction (Savage et al., 1978).

3. Geomagnetic Anomaly

Geomagnetic survey using high precision proton
magnetometer were conducted along the 30 km segment of
San Andreas fault between Palmdale and San Bernardino in

the period 1973-1978 (Johnston et al., 1979). The location
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is shown in Fig. 17. The observed anomalous changes were
maximum of 10 gamma near Cajon and 5 gamma near Palmdale.
These changes are shown in Fig. 17. The increase -of magnetic
field occurred between the period 1974-1976, which corresponds
to the period of partial downwarp of Palmdale bulge. The

peak of change was reached in May 1976.

Johnston et al., (1979) discussed that this anomalous change of
geomagnetic field can be attributed to the local stress change
at the depth less than 10 km. chording to his discussion,

5 bar of stress change is sufficient to cause 5 gamma change
on the surface if magnetization is 10_2 e.m.u. and 50 bar is
needed for 5 gamma change if magnetization is lO"3 e.m.u.

1072

e.m.u. of magnetization is probably the upper'bound in
this region (Johnston, 1978).
4. Seismological Data

There is a quite extensive catalog of earthquakes in this
region during the period 1931 to 1972 (Heilman et al., 1973)
and during the period 1972 to 1974 (Friedman et al., 1976)
that show the relative quietness in this region during the
period of ;plift 1959-1974.

McNally et al. (1978)4presented data on an earthquake
swarm occurred between late 1976 and late 1977. According
to them, in November 1976 an increase in the number of small
earthquakes with local magnietuce (ML) 2.0 to 3.0 began in
Palmdale area, near Juniper Hills to the southeast and

Lake Hughes to the northwest. 1In the year that followed,

1l November 1976 to 1 November 1977, the



MAGNETIC FIELD (GAMMA)

53.

TIME (MONTH/ YEAR)

Fig. 17 Geomagnetic data near Palmdale

PALMDALE
Q. OBSERVATION POINT

0 20

[—

KM
5~ X A
il \ /
T x X\

- /X X/ X
or— X
| | | | | | |
771973 7/1974 771975 7/1976 771977 7/1978

(From Johnston et al. 1979)



number of earthquakes with M; ™ 2.0 was more than an order of
magnitude greater than the long term average for these two
areas.

Most earthquakes in the 1976-1977 period are clustered
in a small volume with linear dimensions of 3 km (maxi-
mum at the depth of 8 km. The fault plane solutions for
the largest four earthquakes occurred in the Juniper Hills
region in 1976-1977 are shown in Fig. 18, together with the
epicenters of these events.

These figures of fault plané'solutions show that the
axis of maximum compression rotates with time in the clockwise
direction from a horizontal northwest-southeast orientation

to a horizontal north-south orientation which is more consistent

with the regional stress field.
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Chapter 5. INVERSION OF PALMDALE DATA

1. Data Input

In order to apply our inversion scheme to Palmdale
Bulge, the displacement at nodes on the surface are calculated
using Savage's data for Block ABCD and Block EFGH shown in
Fig. 16. Horizontal displacements are calculated assuming a
constant strain rate uniform within each block. One nodal point
on the surface was arbitrarily fixed. Vertical displacements
are read from a contour map given by Castle et al., (Castle
et al., 1976). Rigidity 3 x lO11 dyne/cm2 and Poisson ratio
0.25 are assumed. It is assumed that through the period of
whole episode of uplift and downwarp, the shape of contour
does not change, i.e. the distribution of contour line
at 1974 (Fig. 13), is preserved. Data used for inversion
for the uplift 1959-1962, downwarp 1974-1977 for Block ABCD
and Block EFGH are shown in Table 3. Since the temporal
distribution of downwarp is not clear, the whole downwarp
is assumed to have taken place in one year.

2. Result of Inversion

With these three-~component displacements data as input
to our inversion scheme, we obtained the stress inside the
block. The result is shown for the center of each block
at depths 3.75 km, 6.5 km and 8.75 km in Fig. 19 through 21,
where the principal axes are shown using the Schmidt net

(lower hemisphere).
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The magnitude of principal stress is indicated by numeral
in bar in these figures.

Since there is no direct evidence for downwarp in
block ABCD, inversion was applied only to the uplift stage
for this block. The result from Block ABCD shows that during
the period of the uplift at a depth of 3.75 Km, the maximum
compressional axis is oriented in the direction of N9°E
with magnitude 0.8 bar.

The results from Block EFGH during the period 1959-1962,
i.e., the period of uplift is quite interesting because they
are showing dominance of tensional stress in that region
during uplift. The direction of maximum tension is almost
horizontal in the direction of:N48°W with the magnitude
2.1 bar at a depth of 3.75 Km. Inversion for the same block
during the period 1974-1977, i.e. the period of downwarp
gives the horizontal compressiqn axis in the direction of
N40°W with magnitude 2.2 bar at a depth of 3.75 Km. This
compressional stress increases with depth to 4.2 bar at
6.5 Km and 7.0 bar at 8.75 Km depth without changing
directions so much.

Although we don't know exact spatio-temporal distributions
of downwarp and we had to make assumptions about the distribution
of displacements, the obtained state of stress at depth seems
quite compatible with the data obtained by seismological and

geomagnetic observations mentioned earlier.
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The direction and sense of principle axis during the
downwarp period are consistent with the fault plane solutions
obtained for earthquakes in the early period of the swarm
before the clockwise rotation of axis started.

The magnitude of stress obtained for Block EFGH during
the downwarp by this inversion ranges from 2.1 bar at 3.75 Km
depth to 7.0 bar at 8.75 Km depth. This result is again
compatible with the estimate of Johnston (Johnston 1977,
Johnston et al., 1979) for a stress change to account for the
observed geomagnetic change of 5 ‘gamma during the period'
1974-1978. If the magnetization is 10"2 e.m.u., a stress
change of 5 bars will produce the observed change in
magnetic field.

The state of incremental stress at depth was horizontal
tension during the uplift period 1969-1974 and horizontal
compression during the downwarp period 1974-1976. The
incremental stress before the uplift period was probably -
horizontal compression but with the rate an order of
magnitude smaller than that during the downwarp period.

The sudden increase of seismicity during the downwarp

period may be due to accelerated horizontal compression.
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3. Discussion

Mogi (1962) made laboratory fracture experiments on
numerous rock-specimen for the purpose of determining the
probability A (t) of fracture occurrence per unit time at
time t measured after the application of a constant stress.
He obtained the following formula for X (t) in the case of

granite specimen under bending,

BS

A(t) = Ae (41)

where A (t) is called "hazard rate” and S denotes stress.
The two constants A, B for the bending experiments of
granite-specimen were determined as A = 2.0 x lO-lz/year
and B = 0.37 cm®/Kg (Mogi, 1962).

Hagiwara (1974) modified the above equation to give
the hazard rate in terms of ultimate strain which is
determined for actual earthquakes statistically using the
data on land deformations associated with them (Rikitake,

1974). The equation is

Aleg) =

A BE
2 e"nF (42)

€
where A(e)Ae 1is the conditional probability of fracture
occurrence in a strain interval ¢ and € + A€, é is strain
rate, and E is Young's modula. The associated reliability
function, or the probability with which the ultimate strain

exceed €, can be written as
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R(eg) = exp { - —éf exp(BEe- 1) 1}. (43)
BE ¢

This equation was used to derive the two constants
A, B from the statistical distribution of actual ultimate
strain assuming Gaussian distribution for the ultimate
strain. Using the mean value of ultimate strain as
5.3 x 1073 with the standard deviation of 3.3 x 107°
as shown by Rikitake (1974), Young's modulus as 2.0 x 1011
dyne/cm2 and constant strain rate as 5.0 x010-7/year,
the values A = 0.99 x 10'3/year and B = 0.3 cmz/Kg were
obtained. It is noticed that if the ultimate strain
obtained from the San Francisco earthquake in 1906 is
also used in the above calculation, we obtain the values
A=1.4%x 10-3/year and B = 0.19 cm®/Kg. These variations
of constants A, B indicate, together with Scholtz's
fracture experiments under the compression test of quartz
specimen (Scholtz, 1972) which gave smaller values for B
in two orders of magnitude, that these constants may vary
significantly for different rocks, different stress
conditions and different tectonic history of seismic regions.

Denoting two consecutive periods during stress build-up

in an area as period I and period II, we have from eq. (41)
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Ap = AeB(oo+oI)

(43
hpy = AeB(00*OTHOID) ’

where A1, Arrare the probability of fracture occurrences
per unit time at the ends of period I and II respectively,
91 and'qtrare incremental stress during the period I and II
respectively,land O, is the initial stress at the beginning
of period I. The value of B can be determined if we know

AI and AII' i.e. we have

L oS, A (44)

B .
11 I

We can estimate the value of A if we know the initial stress
Oo , or alternatively, we can estimate the stress Oo if
the value of A is determined statistically from past data.

The equation to be used is

1 AT
g = = —_—) -
B hﬂA ) -0

S . (45)

I

According to McNally et al. (1978), the average number
of earthgquake per year at Juniper Hills Béfore 1953 is
0.6 for events larger than Mp 2 2.0 and is 15.0 in the
period of November 1976 to November 1977. The incremental
stress at the focal region is 0.12 bar per year before 1953
and about 7.0 bar in the 1976 to 1977 period as estimated
by our inversion. Putting these numbers into eq. (44),

the value of B is estimated as B v 0.47 cm2/Kg. This is
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gquite comparable to the values obtained by Mogi (1962)
and Hagiwara (1974) though it is much larger than the
value obtained by Scholtz (1972). This large value of
B may be due to the special condition of the particular
section of the San Andreas fault.

Though there are observations which indicate a wide
variability of the value B (Aki, 1978), the two values
obtained from geodetic data, i.e. Hagiwara's statistical
data on ultimate strain and our(inversion of geodetic data
combined with seismic data, and the value obtained from
Mogi's experiments are guite comparable and suggests that
B may be independent of the scale effect to a certain
extent. It may also be possible to extrapolate the wvalue
of A obtained from laboratory experiments to the value for
actual earthquakes in a large region to estimate the
absolute value of probability of the earthquake occurrence.
This is a fundamentally important problem for earthgquake

prediction and will be the subject of our future research.
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Chapter 6. CONCLUSION

Our inversion scheme for determining incremental stress
was successfully tested using artificial data generated by a
buried point source in a homogeneous half-space.

The scheme was applied to the geodetic data from the
Palmdale Bulge, including trilateration, triangulation and
levelling data. Most significant conclusion is that the
horizontal stress at depth as shallow as a few km can be
significantly different from the horizontal stress measured
on the surface from trilateratioﬁ and triangulation alone.

We obtained an encouraging agreement between our estimate
of incremental stress and data from geomagnetic and seismic
observations for the period of downwarp. During this period,
we estimated about 4.2 bars incremental horizontal compression
at a depth of 6.5 km. This is compatible with the change of
magnetic field by 5 gamma observed by Johnston et al.
(Johnston et al., 1979) and increase of seismicity by an
order of magnitude observed by McNally et al. (McNally et al.,
1978).

These results show that our inversion scheme may be
useful for studying various stress-induced earthguake

precursor phenomena as a basis for earthquake prediction.
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Table 1.

Order

Sampling Points and Weight For Gauss-Legendre

r .

Quadrature

j; (sampling point)

.000000000000000

.577350269189626
.577350269189626

.774596669241483
.000000000000000
.774596€69241483

aj (weight)

2.000000000000000

1.000000000000000
1.000000000000000

0.555555555555555
0.088888888388888
0.555555555555555
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Table 2. Values of k, £ m, n

Case k L m n Total
1 12 12 12 12 48
2 36 36 36 36 144
3 36 36 120 36 228

Case 1. Five 8 nodes element are used (Fig. 3)
Case 2. Five 20 nodes element are used (Fig. 4)

Case 3. Twelve 20 nodes element.are used (Fig. 5)



Node

WoOoJaulsn W

2. Block EFGH Period

Node

WoOoO~JoaUes WN -

10
11
12
13
14
15
16
17
18
19
20

Table 3. Data Input
1. Block ABCD Period 1959-1962
u v
.0 .0
.3734927 ~-.5479640
.7469853 -1.095928
-.4361783D-01 -.6053641
.5166211 -1.427310
-.8723567D-01 ~1.210728
.9951066D-01 -1.484710
.2862570 -1.758692
-.5479640 ~1.873492
-.3612177 -2.147474
.1227499D-01 -2.695438
.1990213 -2.969420
-.6351997 -3.084221
~.4484533 ~3.358203
-.2617070 -3.632185
-.8655638 -3.415603
-.3053248 -4.237549
1.095928 -3.746985
-.7224353 -4.,294949
-.3489427 ~-4,842913
1959-1962
u v
.0 .0
.3217809 .2298258
.6435618 .4596516
.1379017 -.3229888
.6205730 .2174995D-01
.2758034 -.6459776
.4366938 -.5310647
.5975843 -.4161517
.2298258 -1.521781
.3907163 -1.406868
.7124972 ~-1.177042
.8733876 -1.062129
.5056292 -2.167759
.6665196 -2.052846
.8274101 -1.937933
.4826404 -2.605660
.9653118 -2.260921
.4596516 -3.043562
.7814325 -2.813736
1.103213 -2.583910

(Unit MM)

w

114.0000
117.0000
120.0000
117.0000
123.6000
120.0000
123.6000
127.2000
130.8000
130.2000
136.8000
139.8000
140.4000
143.4000
146.4000
144.0000
153.0000
147.6000
153.6000
159.6000

w

152.4000
150.6000
1438.8000
156.0000
154.2000
159.6000
159.6000
159.6000
185.4000
186.6000
180.0000
172.2000
213.6000
207.0000
200.4000
216.0000
198.0000
218.4000
207.0000
195.6000
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Table 3 (cont'd.)
Block EFGH Period 1974-1977

3.

Node

WU WN K

N S e el e e
QWo-JohnUds WO

u

.0

.3000000
.6000000
.7500000D-01
.5250000
.1500000
.3000000
.4500000

.0

.1500000
.4500000
.6000000
.1500000
.3000000
.4500000
.7500000D-01
.5250000

.0

.3000000
.6000000

.0
.0
.0

-.3250000
-.3250000
-.6500000
-.6500000
-.6500000

-1.300000
-1.300000
~1.300000
-1.300000
-1.950000
-1.950000
~1.950000
-2.275000
-2.275000
-2.600000
-2.600000
-2.600000

w

-139.7000
-138.0500
-136.4000
-143.0000
-141.3500
-146.3000
-146.3000
-146.3000
-169.9500
-171.0500
-165.0000
-157.8500
-195.8000
-189.7500
-183.7000
-198.0000
-181.5000
-200.2000
-189.7500
-179.3000
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Appendix:

Flow Chart.

Code Geodeinverse

START

A 4

GEODEM

STIFFR

SHUFL3

SOLVR3

STRESS

STOP

END

ISOPA3
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DERIV2
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CCCCCCCCLCCceeeeeeeeeeeeeeececceceeceeeeeecececeeeececeecececececcececceecececceccececececcec
C C
C PRCGRAM GECDINVERSE C
C IHREE DIMENSICNAL GEODETIC INVERSICN SCHEME TO CBTAIN STRESS IN C
C THE EARTH C
C BY C
C KEIICHIRC IREDA C
C CEPARIMENT CF EARTH 2AND PLANETARY SCIENCES C
C MASACHUSETTS INGTITUTE CF TECHNOLOGY c
C 1v DECEMBER 1979 C
C C
dugsddauddaduddddaddasadddddddadddedddddddddddddddddaddeddddddagadaudsayge

IMPLICIT REAL*3(A-H,C-2)

REAL*3 JUWNK,JUNKT,JUNK2

CTMENSICN IDMTX(240),ICOL1(228),IROW1(228),ELAST(6,€),ITEMP(4E)
CIMENSION XCGCRD(76),YCORD(76),ZCORD(7¢€)

CIMENSICHN ICCOLZ(226),IRCW2(228)

DIMENS51ON STIFF(22&,22%),GLCAD(223)

DIMENSICON GLCALC2(222),TEMP(228) ,ESTCR(12,5,€6u),STORZ2(12,¢)
CIMENSIOWN CGSCL1(228) ,XDATA(2d),YDATA(29),20ATA(20)

CCCCCCCCcCeeeecececeeeeeeecececceccecceeccerceecceececececeeccececeeccececccceccceccccecc
C c
C USER SHOUULD PRCVILCE FCLLOWING DATA C
C XCURE, YCCRD, 2ZCCRE-----COCRDINATES CF CUTER BCUNLARY NCLES (kM) C
C THETA--——-————— = DIRECTICON OF PRINCIPAL STRAIN AXIS (DEGEREE)C
C SX,5Y=--mmmmm e PRINCIPAL STRAIN (MICRCSTRAIN) C
C ZDATA- - VERTICAL DISPLACEMENT (MM) C
C ELAST=>-~---vrmmm - ELASTICITY MATRIX (10**11 DYME FER CMx¥2)C
C c
CCCCreeeeeeeeecceeecececeecceececceececceecceceececceececeeceecceceeececececcecceccececcc

C&TA CCNSTL,CCNSTZ2,CONST3,CONST4/.5,.5,.5,.5/

BPrIA MAXND,MAXEL,HAXSND//6 12,28/

CATA ITYPE/Y/

CATA MAXCCL,MAXRCW/60,168/

pDATA IDMTX/G,8,15,13,4¢,51,5¢,54,7,11,14,15,55,52,55,52,¢€9,74,72,7
Xi,4%,51,56,54,61,63,6€,66,553,53,55,52, 62,65,67,64,57,58 6v,5¢,€61,6
X3,68,6€,25,27,32,39,62,€¢5,67,64,2¢,2%,21,28,73,74,7€¢,7%,¢€¢,8,51,4%,
X25,27,62,€¢1,7,78,5%y, c,,46,/4 62,/,,21,42,48 5/,b 15,56,51,27,22,¢¢
X,62,11,72,53,79, 2,,76 65,74,22,24,66,58,15,12,54,56,52,24,66,€8,14
X,71,55,72,31,75,67,76,24,23,569, 6b,l3 6,49,54,54,25,€1,¢¢6,10,¢€9,%52,
X7l,28,73,64,75,23,21,57,59,
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X27,4 &,,2 5,12,17,11, 34 45,36, 29,42,38 4y ,24,15,20,16,12,32,4C,
X4¢, J 17 ly, 16 14 3€, 47,;5,31 24,43,39,23, lq,lﬁ 1, F,: ,L6,481,25,1¢
X,9,4,.Ld,.45 4 ')_),4\.,23,_)9,.)7 21 25 2/'32 ",41 43 48 1261291311

X26,42,45,47,44 33,24,56,35/

CATA ICO Ll/l,a,J,A,S 5,7,¢,9,1¢0,11,12,12,14,15,16,17,1€,1¢,24,21,
X22,22,24,25,26,27,26,29,20,21,22,33,34,35,26,37,36,39,44,41,42,4Z,
X446 ,4%,47,47,48,469,55,51,52,53,54,35,5¢,57,58,59,60/

DA1A IROW1,16G,11,12,13, 14,*5 16,17,1¢,19,29,21,22,22,24,25,29,23%,°C
X1,22,23,37,36,35,46,¢41,42,43,44,45,46,¢67,42,4%,55,51,61,02,%%,64,06
XS,6£,¢€7,¢8,69,74, 71,1¢ 72 74,:5,76,77,78,79,8%,61,32,83,84,55,36,5
X7,88,ES,99,91,9",JJ,94 95,26,)7 98,99,100,1a1,152,103,194,135,1u¢6,

X1lu7,108/
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DC 1 I=&5,166

1 IRCWI(I)=06UL+IL

cars ITEMP/1,2,3,5,12,18,16,24,57,38,39,490,41,42,43,44,45,46,47,4¢
X/

NUM=MAXCCL/3

LO 2 I=1,NUH

IRCW2(3*I-2)=3*ITEMP(I)-2

IRCWZ (3*1-1i)=3*ITEMP(I)-1

IRUW2 (3*1)=2*ITEMP(I)

MAXDEG=MAXND*3

MAX1=MAXDEG*2- (MAXCCL+AXROW)

MAXZz=MAXCOL+MAXRCW

M1=MAXCEGC

MZ=MAX1

FMI=M1+1

MAXID=Z0*MAXEL

CALL GECDEM(ITYPE,MAXDEG,MAXND,MAXSND,THETA,SX,SY,SS,
XXCCRLC,YCCRD, ZCCRD, XDATA ,YDATA, ZDATA, TEMP)

CALL STIFFR(MAXNC,MAXDEG,MGRID,NGRID,LGRID,ELAST,STIFF,XCCRD,
XYCGRD, ZCURL, NFREE ,MAXEL, IDMTX,MAXID,ESTCR) _

CaLL SHUFL3 (MAXDEG,MAXCCL,MAXRCW,STIFF,ICCL1,ICCL2,IRCWI],IRC
AWZz,GLCAD, TEMP)

CALL SCLVR3(M1,#2,M53,8TIFF,GLCALC,GLCADZ2,EPSLON,CHMEGA)

CALL STRESS (MAXDEG,MAXEL,MAXID,MAXCOL,ICOLl,GLOAD2,TEMP, IDMTX, ECTO
XR,GSOL1,ELLAST,STCOR2)

STCP

END

[\

SUBRCUTINE GECCEM(ITYPE,MAXDEG,MAXND,MAXSND,THETA,SX,SY,SS,
XXCGRD, YCORE, ZCORL, XDATA , YCATA, ZDATA , TEMP)

CCCCCCCccceeceeeeceeecececeeccccreeccecrreccceceeecccececeececceeceeeccccecececcccecececcececccc
C C
C S3UBRCOCUTINE FOCR CALCULATING NECESSARY THREE COMPONTNTS CF c
C DISPLACEMENTS CN THE SURF2CE C
C C
CCCCCLlrreecceeeceeeeceeeeccecccececeeeccceceececceceecececceecececcecececcccecececcececcceccecc

IMPLICIT REAL*§ (A-H,0-2)

DIMENSICN XCCORD(MAXND) ,YCCRD (MAXND) ,ZCCORD (MAXND) ,TEMP (MAXDEG) , XCAT
KA (MAXSND) ,YDATE (MBPXSND) ,2DATA (MAXSND) ,ID(36),2CATA2(140) ,ID2(6)
PI=3.1415%265

CatA ID/Y,2,%,3,12,24,24,19,1¢,1¢,¢,1,1,4,6,3,5,¢,2¢,17,15,16,16¢6,1
X5,¢,7,8,8,11,15,15,14,13,12,10,6/

DainA IDz/1,2,6,8,12,15,1¢€,29/

C So REPRESENIS TEWNSCUR SHEAR

55=2.%*55

1HETAZ2=THEUA*PI /160,

Cl=DCCE (IEETAZ)

C<=DSIN(THETAZ)

DO 3u I=1,MAXSND

X=XCCRL (I)-XCCRD (1)
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Y=YCIRD(1)=YCORLC (1)
CX= C'* ..C *V
CY=CZ*K+C1*Y
IF(:I¥pC) 1u,1.,2¢

i CELX=3X*CX
CELY=:-Y*DY
XDAT2(I)=CELK*Ci+CELY*CZ
YCATA {I)=-LELX*CZ+CELY*C1
CLliv 3o

v cELXx=u.
CELY=-GC:*CXK
XDATA(I)=CELY*CZ
YECATA(I)=CELY*C1

5 Coi'iILCE
CC 31 I=1,¢
31 2CaTAZ(IDZ2(1))=ZCATA(I)
CC 32 1=1,z¢,.
1i=IL(1
Te=Il(1+1)
Is=IL(i+2}
sz ZLATAZ (I2)=.5*% (CCATAZ(I1)Y+ZDATA2(I3))
CO 44 1=1,MMXCEG
4. TEME(I)=.
C 41 1=1,1"AXSND
TENP(3*I-2)=XCATA(I)
TEMP(Z*I-1)=YDATA(I)
e; TEMP(Z*I)=ZCATAZ(I)
WREITE(G,1.0)
DC 22 I=1,MAXSHD
@2 wPIVE(G,lvel) I,TEMP(3*I-2),TEMP(2*I-1),TEMP(2*1)
ivouw  FORMAT (BT, 'NCCE',BX,'X',18%X,'Y',18X,'2"',/)

lugl kLPVA"’I:,SX,SGIS./)

FETUR

EnC

SUERCUTINE STIFFR (MAXND,MAXDEG,MGRID,NGRID,LGRID,ELAST,CUMMY, XCCRL

X,YCCRD, 2CCRD, NFREE,MAXEL, IDMTX,MAXID, ESTCR)
CCCCCCCCCCCTCCCTCCCCCeeCCecececeeeecceeceeccececeececceceeccececceececeecececececececcececececc
C C
C SUBKRCUTINE FCR CEWERATING STIFFNESS MATRIX BASEC CON 2.,-NGDES C
C EAFARBULIC BEXPEEDRAL ELEMENT ¢
c C
CC(CCL»LQLCCCCCCpCCC”CyCLCLCCCCCCCFCCCCCCCCCCCCCgCCCCCCCCCLCCCCCCLCCCCCC

IMPLITI'T REAL*C (&-H,C-2)
CIMENSICH EUNMY{MRXDEG,HAXDEG),XCCRD(NAXND),YCCPD(F\XND),ZCCRD("“X
ANL) ,ELAE (¢, 6) ,ID(€0) ,X(29) ,¥Y(20),2(23),S(8(,60), IDMTX(MAXID) ,ES
KR(MBXEL,c, ()
LS 1 i=1,MAXCEG
CC 1 J—J,ArAELb
1 CUMNY (I,u)=u.
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DC €u NEL=1,MAXEL

NEL2=Z0* (NEL~-1)

CC Tu 1I=1,zu

ICLI=ILMIX(NELZ+I)

X(I)=XCCRD(ILC1)

Y(I)=YCCRD(iID1l)

Z(I)=ZCCRL(IC1)

OO &w I=1,29

ID(3*1)=3*IDMTX(NEL2+I)
IC(3*1-1)=ID(3*I)-1
IC(3*%I-2)=ID(3*1)-2

CALL ISCPA3 (NEL,X,Y,Z2,ELAST,S,ESTOR,MAXEL)
DO ¢ 1=1,69

CO 93 J=1,¢4

IC1=1C(1)

IL2=ID(J)

DUMMY (ID1,103)=DUMMY (ID1,ID2)+S(I,J)
CCONTINCUE

RETURN

ENC

SUBRCUTINE ISCPA2(NEL,X,Y,Z,ELAST,SMATX2,ESTCR,MAXEL)
CCCCCCCCeeeeeeccereeecceecccececeececececeeceececccececececceeccececcececccecececceccececce

cC
C
SUBRCUTINE FCR GENERATING 20-NODES ISCPARAMETRIC ELEMENT C
C
C

"CCCCCCCCeCeeeeceececececececececececeeccececeececececececececceceececececceceececcecccc
iMPLICII REAL*8(&-H,C-2)

DIMENSION X (24),Y(29),2(29),GR(3),G5(3),GT(3),Gw(3),
XELAST(6,6) ,SMATX (6 ,€0) ,SMATX2 (60U, o?), (3,3),B(3,3),C(€,9),L(5,¢Ev)
X,E(6,Cu),CE(S,6%2),ET(60,6),DERIV(2,26),ESTCR(MAXEL,€,60)

CATA GR/.7745%6€69241483,u.,-.7745966622414F23/,GS/.774556066%92414¢5>
X,0.,~.7745566€9241483/,GT/.774596569241483,0.,-.77459€6652412E3/
X,GW/.555555555555555, . 888808&88 88€8G,.55555555555555¢8/

DO 2 I=1,69Y

DC 2 J=1,€4

SMATX2(I,Jd)=u.

CC 3 6

9
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84.

S=CGS(1I8)

T=GT(17)

CaLL DERIVZ2(DERIV,R,S,T)
WRITE(€,2yYl)

WRITE(6,37%5) (DERIV(1,J),CERIV(2,J),DERIV(3,J),J=1,23)
FCRMAT(//)

bu 20 I=1,3

CO 23 K=1,2¢
A(I,1)=A(I,1)+DERIV(I,K)*X(K)
A(L,2)=A(1,Z)+DERIVI{I,K)*Y (K)
A(1,3)=A(I,3)+DERIV(I,K)*Z(K)
DET=A(1,1)*A(2,2)*2(3,3)+A(1,2)*A(2,3)*A(3,1)+A(1,2)*A(3,2)*A(2,1)
X=A(1,3)*A(2,2)*A(3,1)-A(1,2)*A(2,1)*a(3,3)-A(1,1)*A(3,2)*A(2,53)
IF(DET.LE.1.¥E-U4) GO TO &Y
B(l,1)=2(2,2)*A(2,3)-A(2,3)*A(3,2)
B(l,2)=a(3,2)*A(1,3)=-A(1,2)*A(3,3)
B(lI3)=-“J(112)*A(2I3)-A(1I3)*A(2I2)
B(2,1)=A(2.5)*A(3,1)-A(2,1)*A(3,3)
5(2'2)=A-(lll)*A(3’3)—A(ll3)*A(3ll)
B(z,3)=A(1,3)*A(2,1)-A(1,1)*A(2,2)
B(2,1)=A(2,1)*A(3,2)=-A(2,2)*A(3,1)
B(3,2)=A(1,2)*A(3,1)-A(1,1)*A(3,2)
B(3,3)=A(1,1)*A(2,2)-A(1,2)*A(2,1)
DO 34 I=1,3

DC 3w J=1,3

B(I,J)=B(I,J)/DET

CO 4¢ I=1,3

DC 4y J=1,29

D(I,3*J-2)=CERIV(I,J)
D(I+:,3*J-1)=DERIV(I,J)
D(I.¢,3*3)=DERIV(I,J)

DC 50 J=1,:

C(1,3)=B(1,J)

C(2,J+3)=B(2,J)

C(3,d+6)=B(5,J)

C(4,3)=B(2,J)

C(4,J+3)=B(1,d)

C(5,d)=B(3,J)

C(5,d+6)=B(1,J)

C(6,J+3)=B(3,3)

C(6,J+6)=B(2,J)

CALL MULTD(G6,9,60,C,L0,E)

CALL MULTD(6,¢,66,ELAST,E,CE)
IF(IR-2) 55,51,55

IF(18-2) 55,52,55

IF(IT-2) 55,53,55

DC 54 I=1,6

DG 54 JU=1,6v

ESTCR(NEL,I,J)=E(I,J)

CCHTINCE

DC €w I=1,¢€

DC €3 J=1,06u

ET(J,I)=E(1,Jd)

CALL MULTLC(6U,6,60(,ET,CE,SHMATX)



85.

WT=GW(IR)*GW(IS)*GW(IT)*CET
Co 75 I=1,6Y
CC 7v J=1,¢0
Ty SMATXZ(TI,J)=SMATX2(I,J)+WT*SMATX(I,J)
ly CCNTINUE
C CALL WRITE (SMATXZ)
C STCP
GC TC %y
oy WRITE(6,130u) NEL
WRITE(G,10vwl)IR, IS, I
WRITE(6,2593) R,S,T
lbvl FCORMAT(1HJ,3IZ)
1066 FORMAT(lHd, 'ERRCR/DETERMINANT ZERC AT ELEMENT',I
DC 1wy I=1,29
lve WRITE(€,2059)X(I),Y(I),2(1)
2uud  FCRERMAT(2G15.7)
DC 141 I=1,:
lvl KRITE(G,Zuul)(DERIV(I,J),J=1,2&)
2usl FCRMAT (£G15.7)
DC 162 1=1,2
1lu2 V\RLLL(G,L\JJ‘.)(A(I J),Jd=1,3)
2ucz FCRM (*GLS 7)
29Ul FCRMAT(lh 3G15.7)
STCE
Su RETURWN
END
SUBRCUTINE DERIVZ(DERIV,R,S,T)
CCCCCCCCCCLCceeereeeeeeeeceeceeceecceeecceeeccececececccecececceecececcecececcceeccececececcecececc
C : C
C SUBRCUTINE FCR CALCULATING JACCBRIAN MATRIX C
C C
CCCCCCCCCCCCeeeeeeeeececeeceeceeeeecccecreeccececeeecececececccecccecccecececccecccececccecccce

IMPLICIT REAL*8 (A-H,0-2Z)

DIMENSION DERIV(3,20)

DATA WCLCE/2%

DERIV(1,1)=(1.+48)*(1.+4T)*.125

CERIV(1,2)=(1.

+S) * (1.

+T)*(-.125)

DERIV(1, 3)*(1 =S)*(1.+T)*(-.125)
DERIV(1,4)=(1.-S)*(1.+T)*.125
DERIV(I,J)=(1 +S)*(1.-T)*.125
CERIV(1,8)=(1.+3)*(1.-T)*(~-.125)
DERIV(1,7)=(1.-S)*(1.-T)*(~-.125)
DERIV(1,8)=(1.-S)*(1.-T)*.125
DERIV(2,1)=(1.+R)*(1.+T)*.125
DERIV(z,2)=(l1.-R)*(1.+4T)*.125
DERIV(& 3)=( .=R)*(1l.+7)*(~-.125)
DERIV(Z,4)=(1.+R)*(1.+4T)*(~-.125)
DERIV(Z,5)=(1.+R)*(1.-T)*.125
DERLV(h, )=(l.-R)*(1.-T)*.125



86.

DERIV(Z2,6)=(1.-R)*(1.-T)*.125
DERIV(5,7)=(1.—R)*(l.*T)*(-.lES)
DERIV(Z,E)=(1.+R)*(1.-T)*(-.125)
DERIV(Z,1)=(1.+R)*(1.+8)*_.125
DERLV(.,2)=(1.-R)*(1.+S)*.125
DERIV(3,3)=(1.~-R)*(1.-8)*.125
DERIV(3,4)=(1.+R)*(1.-5)*.125
DERIV(3,5)=(1.+R)*(1.+8)*(-.125)
DERIV(2,6)=(1.-R)*(1.+S)*(~-.125)
DER¢V(3,7)=(1.—R)*(1.-S)*(-.125)
DER1IV(3,&8)=(1.+R)*(1.-3)*(-.125)
IF(NCDE.EQ.€&) GOTC 1l

DERIV(1,¢

)==.5*R*(1.+4S)*(1.+T)

DERIV(l,1p)=-.25*(1.-S*3)*(1.+T)
CERIV(1,11)==.5*R*(1.-S)*(1.+T)

DERIV(1,12)=.25*(1l.

=S*S) *(1.+T)

DERIV(1,13)==.5*R*(1.+S)*(1.-T)

DERIV(1l,14)=-.25*(1
CERIV (1
DERIV(1l,16)=.
DERIV(1,17)=.
DERIV(i,18)=

(1.

25

CERIV(1,2U)=.25*% (1.

DERIV (1,
DERIV(1l,3)=DERIV(1,
DERIV(1,4)=DERIV(1,4)-.
DERIV(1,5)=DERIV(l,5)-.
DERIV(1,6)=DERIV(1,6)

DERIV(1,7)=DERIV(1,7)~.
CERIV(l,&)=DERIV(l,8)-.

L=S*¥3)*(1.-T)
,15)==.5*R*(1.-5) *(1.
-S*S)*(1.-T)
25*(1.+48) * (1.

.25*(1.+8)*
DERIV(I,IS)—- 25*(1.-8)*
-S)*(1.-T*T)
CERIV(1,1)=DERIVI(1,1)-.
2)=DERIV(1,2)-.
3)-.

-T)

-T*T)
(1.-T*T)
(1.-T*T)

5* (DERIV(1,9)+DERIV(1,12)+DERIV (1,17
5* (DERIV(1,9)+DERIV(1,19)+DERIV (1,18
5* (DERIV(1,19)+DERIV(1,11)+DERIV(]1,1
S*(DERIV(1,11)+DERIV(1,12)+CERIV (1,2
5*(DERIV(1 16)+DERIV(1,17)+DERIV (1,12
5* (DERIV(1,13)+DERIV(1,14)+DERIV (1, 1<
S*(DERIV(1,14)+CERIV(1,15)+CERIV(]1,1¢
S5* (CERIV(1,15)+DERIV(1,16)+DERIV (1, 2:

SOW O WO D~~~
e e e e

— N e e

CERIV(2,9)=.25*(1. -R*R)*(l +T)

DERIV (2, lJ)-— ;*(l
CERIV(2,11)=
DERIV(Z,12)=~

~R)*S* (1.+T)
L25% (1. -R*R) *(1.+T)
.5* (1.+R) *S* (1.+T)

DERIV(2,13)=.25*(1.-R*R)*(1.-T)
CEKIV(2,14)=-.5*(1.-R)*S*(1.-T)
DERIV(2,15)=-.25*(1.-R*R)*(1.-T)
DPERIV(2,16)==.5*(1.+R)*S*(1.-T)
DERIV(2,17)=.25*(1.4R)*(1.-T*T)
DERIV(2,18)=.25*(1.-R)*(1.-T*T)

DERIV(2,19)=-.25*(1.-R)*(1.-T*T)

DERIV(2,2u)==-.25*(1.+R) * (1.

DERIV(<,1)=DERIV(Z,1)-.
DERIV(Z,2)=CERIV(2,2)-.
DERIV(Z2,3)=DERIV(Z,3)~-.
CERIV (2,4)=CERIV(Z,4)-.
DERIV(2,5)=DERIV (2
PERIV(Z,¢)
CERIV (2

=DERIV(Z,6)-.
,7)=DERIV (2,7)-

DEPIV(2,8)=DERIV(2,8]-.

CERIV(Z2,9)=.25*(1.

»S) -

~T*T)
5* (DERIV (Z, 9)+DER V(2,12)+BERIV(2,17))
S*(CERIV(2,¢%)+DERIV(2,1u)+CERIV(Z,1E))
5* (DERIV(Z, lU)+DERTV(4,ll)+DERIV(2 1))
S*(DERIV(Z2,11)+DERIV(2,12)+CERIV(2Z,2v))
S5* (DERIV(2,16)+DERIV(2,17)+DERIV(Z,13))
S*(DERIV(2,13)+DERIV(2,14)+DERIV(2,1¢))
.S*(DERIV(2,14)+DERIV(2,15)+DERIV(2,19))
5* (DERIV(2,1S)+LCERIV(2,16)+DERIV(2,2uU))

-R*R)*(1.+45)
DERIV(5,19)=.25*%(1.-R)* (1

.=S5*5)



DERIV(3,11)=.25*%(1.-R*R)*(1.-S)
DERIV(3,12)=.253*%(1.+R)*(1.-5*5)
DERLV(J,;J)= L25*(1.-R*R)*(1.+58)
DERIV(Z,14)=-.25*(1.-R)*(1.-S*S)
DEhTV(3,15)= .2S5*(1.-R*R)*(1.-5)
CERIV(3,18)==.25% (1. 4R} *(1.-5*3)
DLRLV(J,11)= 5*(1.+R)*(1.+S)*”
DEn‘V(-,;5)= S5*{1.-R)*(1.+48)*7T
LERIV(Z,19)=- 5*( L=R)*(1.-S)*T

CERIV(3,20)==.5%(1.+R)*(1.-8)*T

CERIV(3,1)=DERIV(3,1)-.5*(DERIV(23,9)+CERIV(3,12)+DERIV(Z,17))

DERIV(3,2)=DERIV(3,2)-.5*(DERIV(3,9)+DERIV(3,15)+DERIV(3,1¢))

DERIV(3,3)=DERIV(3,3)-.5*(DERIV(3,1J)+DERIV(2,11)+DEPIV(3,1Y))
DERIV(3,4)=CERIV(2,4)~-.5*(DERIV(3,11)+DERIV(3,12)+DERIV(3,2u))
DERIV(3,5)=DERIV(3,5)-.5* (DERIV(3,16)+DERIV(2,17)+DERIV(Z:,12))
DERIV(5,6)=CERIV(2,€)-.5*(DERIV (3,13 )+DERIV(-,14)+CERIV(J,]U))
DERIV(3,7)=DERIV(2,7)-.5*(DERIV(3,14)+DERIV(3,15)+LERIV(3,19))
DERIV(3,8)=DERIV(3,8)—.5*(DERIV(3,15)+DERIV(3,16)+DEPIV(-,2U))

1¢ RETURN
END

SCBRCUTINE SHUFL3 (MAXDEG,MAXCOL,MAXRCW,STIFF,ICCL1,ICCLZ, IRCW
X1,IRCWZ2,GLCAD, TEMP)

CCCCeeeeceeceeeceeceeecceeceeececcccerecceceeeececrceeececceceeecccececececceccceecccecececce
C C
< SUBRCUTINE FCR ARRANGING KNCWNS AND UNXNCWNS c
C C
CCTCCCCCCCecceeLcceeeeeceeeceeceeeecereecceeceeccceceeecececececececececececceeececccece

IMPLICIT REAL*&(A-H,0-2)
REAL*S JUNK,JUNK2
DIMENSION STIFF (MAXDEG,MAXDLEG) ,GLCAL (MAXDEG) ,TEMP (MAXDEG),
XiCOLI1 (MAXDEG) ,iCCLZ (MAXDEG) ,IROW]1 (MAXDEG) , IRCW2 (MAXDEG)
DG 11 1=1,MAXDEG
il GLCAD(I)=v
LO 1z I=1, IAXDEG
DC 12 J=1,MAXCOL
1z GLOAD(I)=GLCAD(I)-STIFF(I,ICOL1(J))*TEMP(J)
DC z8 I=1,MAXDEG
DC 23 J=1,MAXRCW
24 STIFF(I,J)=STIFF (I,J+MAXCCL)
Du 21 I=1,MAXDEG
LO 21 J=1,MaXCLL
STIFF(I,J+MAXRGW)=W.
21 IF(IRCWZ2(J).EQ.I) STIFF(I,J+MAXRCOW)=-1.
RETURN
END



88.

SUBRCUTINE SCLVR3 (M1,M2,M>,0UMMYé,GLOAL,GLCADZ2,EPSLON,OMEGR)

CCCCCCLCLceereceeeeeeceececceecrceeececececccecececccececcececcecreeccecececcecceecececccececcececccce
C C
C SUBRCUTINE FCR S5CLVING LINEAR EQUATICHN C
C BASED ON GAUSS JCRDAN ELIMINATION USINC PARTIAL PIVOTING C
C c
CCCCcLicceeeeceeecceceetecceeccceceececececcceecececreeceeceeccceceeceeececceececccecececcececcccc

CCcC
IMPLICIT REAL*S(A-H,C-2)

ABS (X) =CABS (X)
DIMENSICN DUMMY4 (M1,M3),GLOAD(M1),GLOAD2 (M1)

IMAX=M1

CC lw I=1,IMAX
lu DUMMY4 (I, IMAX+1)=GLOAD(I)
C GAUSS JORCAN ELIMINATICN

NUM=IMAX+]

CO 130 K=1,IMAX
C:ELL WRITEZ2(CUMMYZ)

LMAX=K

L2=CUMMY4 (K,K)

AMAX=AB3 (D2)

DC &6 I=K,1IMAX

D1=DUMMY4 (I,K)

IF (AMAX.GE.2BS(D1)) GC TC &U
LMAX=I

AMAX=ARS (D1)

3w CUNTIWUE

IF(LMAX.EQ.K) GO TC 1lud
DC SG J=1,NUM
CUMMY6=DUMMY 4 (LMAX,J)
CUMMY4 (LMAX,J)=CUMMYZ4 (K, J)
DUMMY4 (K, J)=CUMMY®6

(@]

D) CCNIINUE
los CONTINUE
C CHECK SINGULAR MATRIX

D2=DUMMY4 (K, K)
IF(RBS(C2) .GT.EPSLON) GO TC 91
DUMMY4 (K, K)=DUMMY4 (K, K) +OMEGA
WRITE(6,230U)K
STOP
91 CONTINUE -
DDIV=CUMMY4 (K,K)
DO 119 J=1,NUM
CUMMY4 (K,J)=DUMMY4 (K,J) /DDIV
11y CONTINUE
DU 121 i=1,IMAX
iF(I.EQ.K) GC Tu 121
DMULT=DUMMY4 (I ,K)
DC 129 J=K,NUii
CUMMY4(1I,J)=DUMMY4 (I ,J)~-DMULT*DUMMY4 (K,Jd)
12y CUNTINUE
121 CCONTINUE
13u CCNTINUE
DC 149 I=1,M]
14y GLOUADZ (1)=DUMMY4(I,IMAX+]1)



89.

2305 FCRMAT(1HY, 'KMATRIX BECAME SINGULAR AT RCW',IS5)
RETURN
END

SUBRCUTINE STRESS (MAXDEG,MAXEL,MAXID,MAXCOL,ICOL1,GLCALDZ, TEMP, IDMT
XX,ESTOK,GSCL1, ELAST,STORZ)

CCCCCCCLreeceeecceeeceeceececeececeecceecececcececeecececececececceccececeeccececcecececccccecce
C

SUBRCUTINE FCR CALCULATING STRESS AND STRAIN IN EACH ELEMENT C

C

NOann

CCCCCLCCCeeeeeceeeeceecereeccecrececececeeececceeeccececrececcececeeeccceecececececcecceccce
IMPLICIT REAL*E (A-H,C-2)
DIMENSICON ICCL1 (MAXDEG) ,GLOALZ(MAXDEG,1),TEMP(MAXDEG,1),
XIDMTX (MAXID) ,ESTOR(MAXEL,6,6%),GSCL1 (MAXDEG,1),ID(&80),DISPL(6C,1)
X,E(6,6u),81(6,1),52(6,1),ELAST(6,6),2(3,3),V(2,3),B(3),B(23),2(3)
DIMENSION STCRZ2(MAXEL,6) ’
EPSL2=0L.1D-45
M1=MAXDEG-MAXCCL
DG 1¢ I=1,MAXCCL
1y GSCL1(ICCL1(I),1)=TEMP(I,1)
DO 11 I=1,M1
11 GSCL1 (MAXCOL+I,1)=GLCAL2(I,1)
OC 24 NEL=1,MAXEL
NEL2=Z24* (NEL-1)
DO 5¢ I=1,20
IC(3*I)=3*ICMTX(NEL2+I)
IC(3*I-1)=IC(3*I)-1

Svu IC(3*1=-2Y=ID(3*1) -2
CO 4 I=1,6U _
4J DISPL(I,1)=GSCL1(ID(1),1)

DC 5y I=1,6
DC Sy J=1,6u
59 E(I,J)=ESTCR(NEL,I,J)
CALL MULT(6,6%w,1,E,DISPL,S1)
CLLL MULT(€,€,1,ELAST,S1,S52)

GCTO 7u

71 CONTINUE
WRITE(6,1062) NEL
WRITE(G,luwl) S1(1,1),52(1,1)
WRITE(6,1w42) S1(2,1),52(2,1)
WRITE(6,1933) 51(3,1),82(3,1)
WRITE(€,1ludd) S1(4,1),52((4,1)
WRITE(6,14Lu5) &1(5,1),52(5,1)
WRITE(6,1606) 51(¢,1),82(6,1)

Tuw CCNTINCGE
DG 5z I=1,6

52 STICRZ (NEL,I)=52(I,1)

C GLTC 24

51 CUNTINUE

A(l,1)=s1(1,1)



1z T=u.

DC zw J=J1,N
IF(DABS(A(1,J)).LE.T) GO TC 205
T=DA3S (A (1,d))
IR=1
IC=J

0 CONTINUE
IF(IT.EC.v) T1=T*ERR
IF(T.LE.T1) GOTC ©2¢¢
IF(IT.LE.ERR) GO TC 966
FS=p(IR,IR)-A(IC,IC)
TA=(-PS+DSQRT (PS*PS+4 . *7*T) ) /(2*A (IR, IC))
C=1./DSCRT(1.+TA*TA)
S=C*T3
LS Su I=1,N

(1IJ-R)

, IR)=C*E+53*V (1, IC)

, IC)=C*V (1,IC)~5*P
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,1)=C*P+5*2A(1,IC)
'C)-C*A( , IC)=-S*P
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4Gy I=IC+1
Sud IF(I.GT.N) GOTC 60u

P=A(IR,I)
A(IR,I)=C*P+3*K(IC,I)
A(IC,1)=C*A(IC,I)-S*P
i=I+1

GC TC S0u

buw F=A(IK, 1K)
A(IR,IR)=C*C*P+2.*C*S*A (IR, IC)+S*S*2(1IC,iC)

A(IC,1C)=C*C*A(IC,IC)+5*S*p-2 . *C*53*A (1R, IC)
A(IR,IC)=u.
IT=I17+1



IF(IQ.LI
CC Slu
D(i)= (
RETURN
END

:TM) GCIC 13
=1,N
P

)

92.



